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ABSTRACT

Despite an abundance of defenses that work to protect Internet users from online

threats, malicious actors continue to deploy relentless large-scale phishing a�acks that

target these users. E�ectively mitigating phishing a�acks remains a challenge for the

security community due to a�ackers’ ability to evolve and adapt to defenses, the cross-

organizational nature of the infrastructure abused for phishing, and discrepancies be-

tween theoretical and realistic anti-phishing systems. Although technical countermea-

sures cannot always compensate for the human weakness exploited by social engineers,

maintaining a clear and up-to-date understanding of the motivation behind—and execu-

tion of—modern phishing a�acks is essential to optimizing such countermeasures.

In this dissertation, I analyze the state of the anti-phishing ecosystem and show that

phishers use evasion techniques, including cloaking, to bypass anti-phishing mitigations

in hopes of maximizing the return-on-investment of their a�acks. I develop three novel,

scalable data-collection and analysis frameworks to pinpoint the ecosystem vulnerabili-

ties that sophisticated phishing websites exploit. �e frameworks, which operate on real-

world data and are designed for continuous deployment by anti-phishing organizations,

empirically measure the robustness of industry-standard anti-phishing blacklists (Phish-

Farm and PhishTime) and proactively detect and map phishing a�acks prior to launch

(Golden Hour). Using these frameworks, I conduct a longitudinal study of blacklist per-

formance and the �rst large-scale end-to-end analysis of phishing a�acks (from spamming

through monetization). As a result, I thoroughly characterize modern phishing websites

and identify desirable characteristics for enhanced anti-phishing systems, such as more

reliable methods for the ecosystem to collectively detect phishing websites and meaning-

fully share the corresponding intelligence. In addition, �ndings from these studies led to

actionable security recommendations that were implemented by key organizations within

the ecosystem to help improve the security of Internet users worldwide.
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Chapter 1

INTRODUCTION

Over the course of less than three decades of being available to the public, the In-

ternet has fundamentally transformed the way in which modern society functions. �is

behemoth resource plays a critical role in areas such as telecommunication, education,

entertainment, and commerce. As of December 2019, an estimated 4.6 billion people use

the Internet—some 58.7% of the world’s population [85]. Furthermore, the growth and

in�uence of the Internet show no sign of stopping. In fact, many current Internet users

might �nd it hard to imagine daily life without access to the services powered by the

Internet, which accounts for over 99% of all global communications [54].

�e origins of the Internet can be traced back to ARPANET, which was a research

project led by the Defense Advanced Research Projects Agency (DARPA) from the late

1960s. ARPANET initially interconnected computers at just four di�erent universities,

but later led to the formalization of protocols that underpin the modern Internet, such

as TCP/IP [108]. It was not long a�er the launch of ARPANET that it became clear that

malicious users could easily gain unauthorized access to parts of the network, and that

there existed a “lingering a�ection for the challenge of breaking someone’s system” [83].

As a result, the security of computer systems turned out to be a larger concern than anyone

at the time had anticipated.

�e invention of the World Wide Web by Tim Berners-Lee in 1989 marked the begin-

ning of the Internet’s transformation away from being a resource only for scientists [10].

By 1993, over one million public hosts were accessible through the Internet. Growth ex-

ploded to 171 million hosts by 2003 and exceeded one billion in late 2013 [60]. Unfortu-

nately, as the scale of the Internet grew, so did the motivation of a�ackers to exploit secu-
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rity vulnerabilities. Today, this motivation is exacerbated by the potential for considerable

monetary gain, as it is the norm—rather than the exception—for sensitive or �nancial in-

formation to be transmi�ed across the Internet and stored on remote systems. Should

such information fail to be adequately protected, it could fall into the hands of criminals

rather than the intended recipients, and those criminals could subsequently monetize the

information at the expense of one or more victims.

1.1 Cybercrime

Cybercrime, also known as computer crime or electronic crime, refers to a broad class

of criminal activity that involves digital devices (e.g., computers, smartphones, or tablets),

computer networks, or the Internet. Like traditional crime, cybercrime ranges in scope

from individual a�ackers, to organized groups, to nation-state actors, including terrorists.

Similarly, cybercriminals can use computers as tools to commit a crime, as targets of crime,

or both.

E�ective prevention of cybercrime presents several unique challenges, as cybercrime

is an ever-evolving landscape that rapidly adapts to changes in technology and user trends.

�e proliferation of connected devices and ease of access to the Internet is a double-edged

sword: although the legitimate use of such technology can greatly bene�t society, its broad

availability also gives criminals a growing a�ack surface with a diminishing barrier to

entry. Simultaneously, cybercriminals have access to a growing suite of anonymization

techniques that they use to cover their tracks. On top of this, underground economies

provide cybercriminals with access to sophisticated a�ack tools without the need for ad-

vanced knowledge [102].

Cybercrime regularly propagates across jurisdictions, which in turn hampers prose-

cution by law enforcement entities. Although there have historically been several high-

pro�le convictions for computer-related crimes, the legal consequences for—and laws and
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policies against—many types of cybercrime remain insu�cient. �is legal ambiguity is

particularly problematic when trying to counter cybercrime characterized by a very large

number of small-scale perpetrators.

�e annual damage caused by cybercrime is di�cult to de�nitively measure due to

the diversity and worldwide distribution of the crimes commi�ed, and the numerous de-

fenses which are required as a result. However, many researchers agree that the impact

of cybercrime has been underestimated by governments and likewise under-reported by

victims [39]. A 2017 study by anti-virus vendor McAfee estimated annual global damage

due to cybercrime to account for $445-608 billion, or nearly 1% of the total GDP of the

world’s developed economies and a $100 billion increase in just three years [81].

Large-scale incidents directly illustrate the staggering real-world consequences of cy-

bercrime, which can spread beyond the con�nes of the realm of computers. In 2017, hack-

ers breached Equifax and were able to steal detailed personal information of over 140 mil-

lion Americans—an unprecedented impact, nearly equivalent to the country’s entire labor

force. �e $1 billion of direct damage su�ered by Equifax in the immediate a�ermath is

dwarfed by long-term consequences such as mass identity the�, the risk of irreversible

brand damage, and even espionage [9]. Around the same time, the ransomware known

as WannaCry infected over 300,000 computers worldwide and subsequently caused tangi-

ble damage by disrupting numerous hospitals, vehicle factories, and public transportation

networks prior to being contained [88]. As of late 2019, no arrests had been made in either

case nor had the perpetrators been directly identi�ed.

On the other hand, everyday cybercrime does not necessarily make headlines, as it

o�en involves small a�acks. However, these a�acks can occur with such frequency that

they are collectively no less signi�cant than high-pro�le breaches. As one of their most

routine a�acks, cybercriminals perform tens of billions of vulnerability scans each day to

a�empt to gain unauthorized access to computer systems across the Internet [81]. Beyond
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wasting network bandwidth worldwide, such scans force the owners of computers with

network access to always remain vigilant and quickly address vulnerabilities as they are

discovered. �e necessity of vigilance is a recurring theme in the �ght against a�ackers

because individual users are also targeted directly. In 2019, more than half of all e-mail

tra�c was estimated to be spam (unwanted or abusive), with content ranging from un-

wanted advertising to dangerous malware [62]. As part of their spam campaigns, a�ackers

�ood the Internet with hundreds of new deceptive websites each day to trick victims into

making payments or revealing sensitive information [5]. At times, a�acks are even de-

livered through more traditional means such as phone calls or text messages [128]. �e

FBI Internet Crime Complaint Center reported that the compromise of business e-mail

accounts alone caused over $12 billion in total reported monetary loss between 2013 and

2018 [39]. �e broad range of a�ack types suggests that this is just the tip of the iceberg,

and thus e�ectively thwarting the a�ackers’ onslaught is a daunting challenge.

Ultimately, around virtually every corner of today’s technologically-heavy world, an

a�acker stands ready to cause damage to a victim, whether it be in terms of time, money,

information, or intellectual property. Fortunately, a wide gamut of defenses has already

been proposed to protect victims from many such a�ackers. However, the burden of ef-

fectively implementing these defenses falls upon the individuals, organizations, and gov-

ernments involved, who must make a concentrated and deliberate e�ort to address each

threat. At the same time, research e�orts must keep up with (and, ideally, exceed) a�ack-

ers’ capabilities to ensure mitigations remain su�cient and that a proper understanding

of a�acks is maintained over time.

1.2 Phishing

Phishing—a type of a�ack in which victims are tricked into disclosing sensitive in-

formation by means of social engineering—is a prime example of one type of the afore-
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mentioned everyday cybercrime, and it occurs on a mammoth scale. Phishing typically

involves lures such as deceptive (spam) e-mails or phone calls to catch the a�ention of

victims, who are later directed to a fake (but convincing) web page or application to un-

suspectingly submit credentials, disclose personal information, or even send payments.

A�ackers then use the submi�ed data for fraudulent purposes, usually with the end goal

of monetization.

On the surface, phishing a�acks may seem to be quite trivial, as they o�en consist of

just a few straightforward steps such as se�ing up a website and sending e-mails. One

might therefore reasonably assume that mitigating such a simple a�ack poses no chal-

lenge, and that modern technology has surely eliminated phishing to allow for our valu-

able time to be spent addressing more sophisticated threats.

Indeed, since the early days of the World Wide Web, numerous defenses against phish-

ing have been proposed and implemented [110]. We have moved from an era of hetero-

geneous, marginally e�ective browser security toolbars [137] to one with anti-phishing

systems that operate on a global scale and are natively available in modern web browsers

and e-mail systems [101, 130, 136]. Such systems are further augmented by multi-layer se-

curity strategies developed by anti-phishing organizations, such as user awareness train-

ing [68] and two-factor authentication [129].

Yet, despite the many e�orts of researchers and engineers, not only has the security

community failed to thwart phishing, but phishing a�acks continue to evolve in terms

of both volume and sophistication. Even as of 2019, every month, millions of Internet

users are the potential victims of phishing by tens or hundreds of thousands of deceptive

websites [6, 78]. Per the Google Safe Browsing Transparency Report, the sustained volume

of phishing websites reached an all-time high in 2019, and phishing has almost completely

replaced malware as the primary threat against web browsers [47].
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Specially-cra�ed variations of phishing a�acks—known as spearphishing—have his-

torically also targeted high-pro�le victims [55]. For example, during the 2016 US presi-

dential election, a�ackers successfully used a deceptive e-mail to obtain account creden-

tials of a senior campaign manager and subsequently publicly leaked over 20,000 pages

of private e-mail communications [49]. Globally, the total annual damage from phishing

has been estimated to range up to $3 billion [57]1.

In 2003, the Anti-Phishing Working Group (APWG) was founded as a non-pro�t asso-

ciation to address the “growing problem of phishing, crimeware, and e-mail spoo�ng” [3],

with membership open to businesses, organizations, and government agencies either af-

fected by phishing or otherwise involved in anti-phishing e�orts. Among the APWG’s

key activities are sharing phishing intelligence and regularly publishing phishing trend

reports. In one of its �rst reports, dated October 2004, the APWG detected some 1,142

unique phishing websites and 6,597 unique phishing e-mails [3]. Today, such statistics

are on the order of hundreds of thousands per month [5]. Figure 1.1 summarizes the

APWG’s aggregate phishing metrics over the course of the past 15 years.

Due to changes in reporting methodologies (and the broader Internet ecosystem) over

time, reports such as those of the APWG should not be considered as a de�nitive summary

of long-term phishing trends. However, we can certainly observe a sustained volume

of phishing a�acks over the years. Moreover, as a percentage of all hostnames on the

Internet, the representation of phishing websites more than doubled between 2005 and

2018, from approximately 0.047% to 0.102% [60]. It is reasonable to suspect that phishers

are able to maintain a su�cient return on investment to justify carrying out (or growing)

their a�acks, even amid modern defenses.
1Accurately quantifying the damage caused by phishing is itself a di�cult problem. I discuss the reasons

for this in Chapters 2 and 6.
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Figure 1.1: Growth of phishing a�acks from 2004 to 2018 (APWG and ISC) [5, 60].

Given the aforementioned observations, it should not be surprising that the e�ec-

tive protection of victims from phishing a�acks poses a number of di�cult challenges—

many of which are yet to be solved. Technical countermeasures against phishing are of

paramount importance as they have the ability to automatically protect users at scale.

However, because phishing a�acks function in part by exploiting the human si�ing be-

hind the screen, technical mitigations alone will not always su�ce. When the human

user is the weakest link, a successful phishing a�ack may simply need to trick that user

to the point that he or she ignores common warning signs (or, in some cases, even the

alerts that are shown by an anti-phishing system). Second, due to the wide availability

of exploitable Internet infrastructure and lack of universal authentication in e-mail pro-

tocols [117] and other messaging platforms [19], phishing a�acks can be carried out on

a large scale and at a low cost to a�ackers. Finally, a�ackers generally have the upper

hand as they greatly outnumber defenders, and their mission does not hinge on success-

fully phishing every targeted victim—only enough to make a pro�t. On the contrary, the

organizations that are impersonated by phishers have a much harder job, as they must be

able to pinpoint a�acks amid a large volume of benign user activity, all while ensuring the
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availability of large online systems. Even a small control gap in such a system could mean

victory for the a�acker. I discuss the challenges in the �ght against large-scale phishing,

in detail, throughout the rest of my dissertation. Consequently, I develop a series of sys-

tems to overcome some of these challenges and to ensure a high baseline level of phishing

protection for Internet users.

1.3 Contributions of this Dissertation

I have thus far discussed why phishing a�acks continue to work. However, to be

able to improve existing defenses and seal gaps that are being exploited by criminals, we

must understand exactly how it is that phishing can continue on such a scale. Due to the

di�culty of making representative measurements at the ecosystem level, and the rapidly

evolving landscape of threats, much prior research has o�en glanced over the necessary

measurements to gain such an understanding [130].

In this dissertation, I present work that sheds new light on phishing a�acks, pro-

vides ecosystem-level measurements, and ultimately motivates a new generation of anti-

phishing defenses that recognize the importance of proactive threat intelligence and col-

laboration within the ecosystem. Moreover, through vulnerability disclosures and sub-

sequent collaborations, parts of my research have led to security recommendations that

have positively impacted the online security of more than one billion mobile browser

users [101].

In Chapter 3, I analyze the evasion techniques employed by phishers through the �rst

in-depth study of .htaccess �les in the context of phishing websites. I also estimate the

extent to which compromised infrastructure is used for phishing and propose methodol-

ogy for �ngerprinting a�acks based on URL and WHOIS data. I hypothesize that evasion

techniques that might otherwise seem trivial are in fact defeating today’s primary anti-

phishing defenses, and that more sophisticated techniques may be capable of causing a
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far greater degree of damage. In addition, I �nd that a low barrier to entry due to the easy

accessibility of phishing kits in underground economies is a key factor in the scalability

of phishing a�acks.

To test the hypothesized e�ectiveness of evasion techniques against the anti-phishing

ecosystem, I propose and develop a framework called PhishFarm, which I describe in

Chapter 4. PhishFarm enables the creation of highly-automated experiments to test anti-

phishing blacklists—and other mitigations—by introducing batches of representative (al-

beit innocuous) phishing websites into the ecosystem. �is approach allows us to obtain

ground truth on the deployment time and con�guration of each phishing website, and

it can be done without involving any human users or phishing victims. �rough the de-

ployment of several experiments consisting of thousands of phishing websites, PhishFarm

identi�ed actionable shortcomings in the blacklists that protect modern web browsers and

resulted in numerous security recommendations (that I disclosed) for the ecosystem as a

whole.

In Chapter 5, given the positive impact of the initial set of �ndings obtained by Phish-

Farm, I extend the system to perform a long-term study of the anti-phishing ecosystem

and develop a new framework, PhishTime, for the continuous generation of longitudinal

experiments that replicate the evasiveness of real-world phishing websites. I use Phish-

Time to verify if blacklisting remains consistent over time, measure the implications of

deploying phishing websites with SSL certi�cates, and test combinations of evasion tech-

niques representative of sophisticated phishing a�acks in the wild. In addition, I precisely

measure the response time (speed) of anti-phishing blacklists to determine the window

of opportunity that is available to a�ackers: a reliable indicator of whether the ecosys-

tem’s defenses are improving. Findings from the PhishTime study revealed changes to

the ecosystem since the original PhishFarm experiments—some of which directly resulted

from the aforementioned security recommendations. Both PhishFarm and PhishTime of-
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fer re-usable and scalable methodology which can continuously be used by the ecosystem

to bolster the understanding of the state of its defenses.

�e response time of mitigations such as anti-phishing blacklists is only a small com-

ponent of the complete timeline of phishing a�acks. To be able to fully understand the

extent to which these mitigations are deterring a�ackers—and to gain further insight into

characteristics of successful a�acks—deeper analysis is necessary. In Chapter 6, I propose

methodology to paint an end-to-end aggregate timeline of real-world phishing a�acks,

from the time of initial deployment, through the points at which victims interact with

a�ack websites, to the time that victim credentials are monetized. In the �rst study of its

kind, I deploy this methodology on a large dataset of network tra�c from a major �nan-

cial services provider and a dataset of user phishing reports from a major e-mail provider.

�e �ndings from this study motivate an increased focus on proactive defenses in the

long-term �ght against phishing, and the same methodology can be used directly as a

proactive anti-phishing mitigation.

On the surface, modern phishing a�acks are marked by a seemingly unending volume.

�roughout the research presented in this dissertation, however, I subject these a�acks to

close scrutiny, which reveals a high degree of ingenuity collectively applied by a�ackers.

I show that sophisticated phishing websites are far more e�ective than simple ones: By

prioritizing mitigations targeting these websites, the anti-phishing ecosystem can start

closing the key gaps that currently enable phishing to remain pro�table as a whole.

Although it may not yet be possible to fully defeat phishing, I hope that the techniques

presented throughout my dissertation will in�uence the next generation of anti-phishing

systems to be�er (and continuously) adapt to ever-evolving and evasive phishing a�acks,

just as a�ackers have been adapting to the current generation of anti-phishing mitigations

through their array of clever tactics.
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Chapter 2

BACKGROUND

To be able to make a positive impact on the �ght against phishing, we must �rst famil-

iarize ourselves with the nature of phishing a�acks, the tools at the disposal of a�ackers,

and the main defenses currently in place. We must then understand how phishers respond

to those defenses so that we can identify potential vulnerabilities and think ahead to the

next steps that phishers might take. In this chapter, I introduce basic aspects of phishing

and provide an overview of the ecosystem that surrounds phishing a�acks.

2.1 Social Engineering

In the context of information security, social engineering refers to the psychological

manipulation or deception of a victim, by an a�acker, such that the victim performs an

action that is bene�cial to the a�acker [66]. Phishing is a speci�c type of social engi-

neering through which a�ackers (known as phishers) seek to trick victims into disclosing

sensitive information [27]. Phishing has been fueled by the growth of the Internet and

commonly occurs online.

Phishing a�acks currently target millions of users each year and can cause direct dam-

age to victims through account compromise, �nancial fraud, and identity the� [81, 125].

�ese a�acks also in�ict reputational damage to brands which they impersonate, and col-

lateral damage to the broader ecosystem, which �ghts to mitigate the threat posed by the

a�acks. Modern phishing a�acks fall into two general categories, both of which can cause

substantial damage to their victims: spearphishing, which targets speci�c high-value in-

dividuals, groups, or organizations [52, 55], and traditional large-scale a�acks, which are
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Figure 2.1: A traditional phishing a�ack.

distributed to a broad range of potential victim users and enable a�ackers to pro�t through

volume [114]. In this dissertation, I focus primarily on the la�er.

2.2 Phishing A�ack Anatomy

�e stages of a typical phishing scenario are illustrated in Figure 2.1. An online phish-

ing a�ack consists of three main stages: preparation ( 0 ), distribution ( 1 and 2 ), and data

ex�ltration ( 3 ).

First, before targeting any potential victims, an a�acker spoofs a website by copying

its look and feel such that it is di�cult for an average user to distinguish between the

legitimate website and the fake one ( 0 ). Next, the a�acker sends messages (such as spam

e-mails) to the user, leverages social engineering to insist that action is needed [27], and

lures the user to click on a link to the phishing website ( 1 ). If the victim is successfully

fooled, he or she then visits the website and submits sensitive information such as account

credentials or credit card numbers ( 2 ). Victims will o�en be shown a reassuring con�r-

mation message to minimize suspicion of the a�ack a�er the fact. Finally, the phishing

website transmits the victim’s information back to the phisher ( 3 ).
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Phishers who obtain victims’ credentials will then a�empt to fraudulently use them

for monetary gain [33] either directly ( 4a , 5a ) or indirectly ( 4b , 5b ) [126].

2.3 �e Scalability of Phishing

Although phishing a�acks might seem dangerous at �rst glance, the likelihood that

a targeted victim will be successfully deceived by phishing is in fact relatively low. In

a recent empirical study, only 9% of visitors to a phishing website ended up submi�ing

credentials [51]. �e true danger of phishing a�acks stems from their scalability and a

low barrier to entry. In other words, it is easy for a�ackers to target a very large number

of potential victims and still make a pro�t. Such scalability is made possible through un-

derground economies, in which skilled criminals o�er commoditized tools and services

that enable various types of cybercrime, including phishing [53]. �ese services enable

a�ackers—even those who otherwise lack technical knowledge—to easily perform phish-

ing a�acks and monetize stolen data.

2.3.1 Phishing Kits

A phishing kit is a uni�ed collection of tools used to deploy a phishing website on

a web server [82]. Some phishing kits are closely held by their creators, while others

are o�ered as part of the cybercrime-as-a-service economy [74]. Certain criminals spe-

cialize in creating and selling phishing kits and will even accept custom requests for kit

creation [12]. Kit creators compete based on the e�ectiveness, ease of use, or perceived

security (i.e., from anti-phishing systems) of their kits. Other criminal service providers

sell or barter to provide pre-hacked web servers (sometimes called “shells” or “cpanels”

in criminal marketplaces). Still others o�er lists of spam recipient e-mails and tools for

sending phishing messages in bulk [126]. Together, these tools lower the barrier to entry

and allow criminals with very minimal technical skills or limited capabilities in English
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to become successful phishers [22]. �e phisher can simply buy a kit, customize it by

replacing the destination e-mail address, and upload and unzip the kit on a pre-hacked

web server. �e phisher then loads a pre-wri�en message and a list of target e-mails into

his or her spamming tool, hits “send,” and waits for stolen credentials to arrive in his or

her inbox.

Basic components of a phishing kit include a template that mimics the design of the

website being impersonated, server-side code to capture and send submi�ed data to the

phisher, and optionally code to �lter out unwanted tra�c or implement other counter-

measures against the anti-phishing community. Such countermeasures might include

URL shortening or redirection, URL randomization, human veri�cation, or code obfus-

cation [51]. I analyze phishing kits in more detail throughout Chapter 3, and I discuss

certain sophisticated phishing kits in Section 6.7.1.

2.3.2 Deploying a Phishing A�ack

To carry out a traditional phishing a�ack, phishers �rst need to have access to a live

web server to host the phishing website. In most cases, creating the website merely in-

volves uploading a phishing kit archive to the server and extracting its contents to the de-

sired URL path [40]. Free hosting providers, as well as legitimate infrastructure that has

been compromised, are particularly common hosting targets. Such hosting is desirable

because using an existing live URL bypasses the requirement to purchase a new domain

name and, thus, saves phishers both time and money [89]. Otherwise, the phisher must

also register a domain name that will point to the phishing content.

In the case of compromised infrastructure, the phisher gains access to upload malicious

�les to a web server he or she does not own by exploiting a known web vulnerability or

by using default or stolen credentials to access administrative so�ware running on the

server [17]. Exploitation is o�en automated and results in the uploading of a shell script
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Figure 2.2: Key components of the anti-phishing ecosystem.

on the server which can then be used to remotely execute commands. Service providers

in underground economies routinely provide access to such infrastructure for a fee [53].

Once the phishing website is online, phishers distribute its URL through means such

as e-mail, social media, or direct messaging [57]. Messages are cra�ed to deceive the user

and o�en convey a sense of urgency to encourage action [27].

�e phishing campaign will remain online for some period of time during which

the phishing website collects credentials from victims who fall for the scam and for-

wards them to the phisher. Eventually, the website will be detected and blacklisted by

anti-phishing systems, abandoned by the phisher, or forcefully taken o�ine by the web

host [94]. Security e�orts aim to minimize the amount of time that passes between phish-

ing website deployment and blacklisting or take-down [114].

2.4 Anti-Phishing Ecosystem and Defenses

Phishers have extensive control over the con�guration of the phishing websites that

they deploy. As I described in the previous section, this con�guration includes the loca-
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tion (URL and hosting provider) of the website, the so�ware the website uses to display

the malicious content and capture user input, and the deceptive messages distributed to

victims. Adversaries, entities who seek to �ght phishing, and organizations impersonated

or otherwise abused by phishers are involved in various ways in each of these three areas.

�e relationships between these entities give rise to a complex anti-phishing ecosystem

which, due to its scale and potential impact on mitigating phishing, remains the center of

discussion throughout Chapters 3-6.

2.4.1 Ecosystem Overview

As shown in Figure 2.2, the phisher ( 1 ), phishing message ( 2 ), victim user ( 3 ), and

organization being impersonated ( 4 ) lie at the heart of a phishing a�ack. Without these

basic components, there would exist no basis of trust between the victim user and orga-

nization and no means of exploitation by the phisher [27].

Users are prone to re-using the same credentials across di�erent services [125]. �is

means that the damage from each successful phishing a�ack can potentially cause a chain

reaction spanning multiple organizations. �us, the organization directly targeted by the

phisher ( 4 ) expands to a set of indirectly targeted organizations of interest to the phisher

( 5 ) that use the same authentication scheme (such as username and password). Given the

risk of damage that arises as a result, the organizations implement mitigation strategies

consisting of their own security teams, third-party anti-phishing vendors, or law enforce-

ment ( 6a ). Because the victims themselves are the weakest link in any phishing a�ack,

such mitigations are not always technical: they also include user education and phishing

awareness training [141].
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2.4.2 Detecting Phishing Content

Phishing websites are displayed to the user through a web browser, which, in turn,

necessitates browser-based defenses. To support these defenses, there exist organizations

that maintain blacklists of known phishing websites, organizations that verify phish-

ing reports, and native web browser functionality that checks the blacklists [114] and

blocks known websites as a baseline protection against phishing a�acks ( 6b ). Consumer-

oriented security �rms ( 6c ) also o�er so�ware for end-users who want additional protec-

tion (e.g., antivirus and internet security tools). While the former three classes of organi-

zations all contribute to the anti-phishing e�ort, they have di�erent priorities and scopes

of operation, and are thus worth distinguishing.

Because native browser blacklists (discussed in far greater detail in Chapter 4) ac-

cept user phishing reports, a community of savvy web users, industry collaborators, and

researchers joins the �ght against phishing ( 6d ). �ese groups gave rise to organized

community-driven e�orts to list and con�rm phishing websites, such as PhishTank, Open-

Phish, or the APWG [29].

Phishing content itself o�en stems from phishing kits, which can be obtained through

forums or dark web communities that fuel cybercrime ( 7 ). Credentials and personal data

stolen through successful a�acks are sold by phishers via illicit underground economies [126]

which in turn yield tools and motivation for future a�acks.

2.4.3 Hosting Infrastructure

�e hosting platforms ( 8a ) on which phishing websites get deployed fall into two

main categories: those controlled directly by the phisher and abused to carry out a�acks,

and those belonging to legitimate websites that get hijacked by the phisher [51]. In the

�rst scenario, domain registrars and certi�cate authorities ( 8b ), both paid and free, can
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be the subject of further abuse through malicious domain registrations [78, 100]. In the

second scenario, the website owner ( 9 ) may su�er collateral damage, such as disruption

of regular business operations or loss of productivity as a result of incident response from

the hosting provider or one of the security vendors previously discussed ( 6a ). �e hosting

provider may also make e�orts to reduce hijacking through diligent patching or intrusion

detection. �rough direct abuse reports [44], the hosting provider may also enact content

take-down [1] as an anti-phishing mitigation.

2.4.4 Message Distribution

Phishers require a communication channel to initiate their scams against targeted vic-

tims. Major e-mail providers and social media networks inevitably capture a large volume

of phishing messages ( 2 ) through their platforms [19], thus they are dragged into the

ecosystem once they start dedicating resources to protect their users. E-mail providers

may check incoming messages, mark them as spam or alert the user if malicious content

is found, and forward abuse reports of identi�ed phishing URLs to concerned entities ( 6a ,

6b ) [64, 125]. With the rapidly changing state of social media and mobile devices [96],

phishers are also keen to bypass the protections available in traditional communication

channels such as e-mail.

2.5 Summary

Despite appearing simple on the surface, phishing a�acks are not only complex, but

they are a widespread problem that remains unsolved from a security perspective, despite

ever-evolving mitigations within the ecosystem. Phishers gravitate toward whatever tools

and methods most e�ciently facilitate their a�acks on a pro�table scale.

In the next chapter, I use phishers’ own tools against them: I leverage a large dataset of

phishing kits and URLs to understand the precise nature of phishing within the ecosystem
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(between 2016 and 2017), with a focus on key tactics that phishers leverage to slip past

defenses while e�ectively deceiving their victims. Consequently, this understanding will

reveal the gaps in defenses that allow phishing a�acks to remain worthwhile for criminals.

In Chapters 4-6, I focus on studying these gaps in more detail, and I propose ways in which

they can be measured and addressed.
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Chapter 3

UNDERSTANDING EVASION TECHNIQUES THROUGH PHISHING KIT ANALYSIS

3.1 Introduction

�e behemoth scale of credential the� cannot be overstated. Between March 2016

and March 2017, malware, data breaches, and phishing led to 1.9 billion usernames and

passwords being o�ered for sale on black market communities [125]. Although phishing

a�acks are conceptually simple, they are di�cult to e�ectively counter because phishers

and anti-phishing entities are engaged in an endless cat-and-mouse game. �e techno-

logical tools used by both are ever-evolving in response to the other’s actions [71].

Phishing a�acks are particularly damaging not only due to their high volume, but

because their impact extends beyond the individuals who are directly targeted. �e or-

ganizations being impersonated in phishing a�acks (such as �nancial institutions or e-

mail providers) expend vast resources to minimize their losses and must work together

with security �rms and researchers to address a�ackers’ increasing level of sophistication.

As I discussed in the previous chapter, this has given rise to an anti-phishing ecosystem

comprised of diverse entities working toward the goal of mitigating the threat posed by

phishing [18].

In this chapter, I leverage two di�erent datasets to expose the speci�c techniques that

phishers employ to avoid detection by the anti-phishing ecosystem while maximizing

their return on investment. In other words, I follow the breadcrumbs that phishers leave

in the wild to uncover their tactics. Ultimately, my goal is to obtain a clear understanding

of the current ecosystem, the motivations of phishers, potential threats to victims, and

possible shortcomings of abuse-reporting entities. I propose general solutions to counter
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sophisticated phishing a�acks and identify new research directions for evaluating and

improving phishing countermeasures: these �ndings set the stage for later chapters of

this dissertation.

I �rst analyze a dataset of over 2300 real-world phishing kits (retrieved by Cofense,

Inc. between Q1 and Q2 2016) to gain insight into the di�erent server-side approaches

that phishers take to evade existing phishing website detection infrastructure, speci�cally

focusing on �ltering directives found in .htaccess server con�guration �les. Many of these

directives allow us to identify security organizations commonly targeted by phishers. Be-

cause phishing kits are ready-to-deploy, reusable packages used to carry out phishing

a�acks, I am also able to observe pa�erns in the distribution and adoption of such kits

across multiple a�acks.

I then use over 170,000 phishing URLs (submi�ed to the APWG during the �rst half of

2017) to identify the extent to which compromised infrastructure and domains are used for

phishing. Based on this data, I propose an up-to-date phishing URL classi�cation scheme,

and I combine URL classi�cation with domain age to �ngerprint each phishing a�ack.

Analyzing the so�ware code within phishing kits and the corresponding a�ack URLs

allows us to not only understand the goals of phishers but also reveals the evasion tech-

niques that they use. In turn, dissecting these techniques allow us to pro�le the nature of

each a�ack. Previously, no detailed insight into the server-side evasion techniques (which

I discuss in Section 3.2) has been published in the context of phishing, yet thoroughly un-

derstanding these techniques can help anti-phishing entities identify and mitigate a�acks

more quickly and more reliably [58].

Phishers o�en carefully select the URLs that host their a�ack websites, either in whole

or in part. �ese URLs are frequently cra�ed to deceive victims [41], but they can also

be formulated to instead evade detection. With minimal e�ort from the phisher, request
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�ltering and cleverly chosen URLs can dramatically bolster the e�ectiveness of a phishing

a�ack; I thus focus my analysis in this chapter on these two areas.

My immediate contributions can help organizations involved in the �ght against phish-

ing consider the dynamics within the entire anti-phishing ecosystem, understand what in-

�uences pa�erns in phishers’ URL and hosting selections, and understand the nature and

purpose of server-side �ltering that phishers employ. �ese �ndings are the precursors

to a larger study in Chapter 4, which seeks to measure the true e�ectiveness of phishers’

evasion techniques and is motivated by the potential for a more e�ective and timely in-

cident response by anti-phishing entities (to ultimately improve the security of potential

phishing victims).

3.2 Analysis of Server-Side Filtering

Many phishing kits employ request �ltering, which requires some set of conditions

to pass (based on information contained in the HTTP request or server state) before the

phishing website is displayed to the client. Filters are of particular interest to researchers

as they allow us to gain insight into the organizations that a phishing kit is trying to

evade, or the group of users being targeted, thus making it possible to �ngerprint the kit.

Filtering in phishing kits is analogous to content cloaking [58], a technique used by spam

websites to serve unwanted content to human visitors while showing seemingly benign

content to web crawlers. Within the la�er context, the goal of cloaking is to a�ain high

search engine rankings. Phishers use cloaking in a similar manner, but for a di�erent

purpose.

Denying requests through server-side �ltering seems paradoxical at �rst glance, as the

phisher’s goal is to scam as many victims as possible. However, the phisher also wishes

to evade detection, which is where �ltering plays an important role. It is thus in the

phisher’s interest to serve the phishing content to a legitimate victim while denying access

22



to search engines, security �rms, researchers, and blacklist crawlers, all of which could

lead to the detection of the a�ack and trigger an anti-phishing response. Successfully

blocking these entities decreases the likelihood of timely detection and blacklisting of the

phishing website, ultimately increasing the phisher’s return on investment.

Filtering can be implemented in various places, including server directives, server-side

scripts (wri�en in languages such as PHP and Python), or JavaScript that runs in the user’s

web browser. �e former two approaches are common and allow for very similar types of

�ltering with certain trade-o�s as discussed below. �e la�er is an emerging pa�ern seen

in more sophisticated phishing kits and would be suitable for detailed analysis—possibly

through scalable automated crawling of phishing website source code—in future work.

.htaccess �les are used to supply con�guration information for the Apache web server,

the most common server so�ware used for approximately 44.99% of active websites as of

August 2017 [96]. Such �les are placed in directories containing web content and scripts.

�ey allow con�guration to be speci�ed without root-level access to the server, which

makes them possible to deploy without a complete breach of a system (gaining access to

upload �les to a public folder is generally su�cient). �ey are also simple for phishers

to write and maintain through di�erent iterations of a kit as they carry no dependencies.

All this ease makes .htaccess �les particularly appealing and they are therefore a common

sight in phishing kits. .htaccess �les lend themselves well to analysis as they are comprised

nearly entirely of �ltering directives in a homogeneous format, as opposed to arbitrary

server-side code which can be wri�en in many di�erent ways and can be obfuscated.

I examined a dataset of PHP scripts from phishing kits as part of this research and

found them to implement �ltering strategies in the same manner as .htaccess �les. �e

main bene�t of using scripts over server-side directives is the ability to track a user, some-

thing which has been previously studied [22, 51]. I thus focus my analysis on .htaccess

�les.
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In the following sections, I examine a large dataset of .htaccess �les in detail to reveal

the nature and prevalence of request �ltering techniques employed by phishers while

identifying their underlying motivation. Consequently, I propose methods to defeat each

type of �lter identi�ed, and I synthesize a list of the anti-phishing organizations that

phishers a�empt to evade based on the contents of the .htaccess �les. Finally, I consider

metadata of the .htaccess �les to plot phishing kit age and evaluate kit re-use.

3.2.1 Dataset Overview

My dataset consists of a sample of 2,313 .htaccess �les extracted from 1,794 live phish-

ing kits hosted on 933 di�erent domains. �ese kits were retrieved between January 1 and

June 30, 2016, and provided to me by Cofense (formerly PhishMe), a company that spe-

cializes in phishing-related security solutions. In addition to the contents of the .htaccess

�les, the dataset contained the �le modi�cation date, date of retrieval, and URL of each

kit.

1 o r d e r a l low , deny

2 a l l o w from a l l

3 deny from 6 0 . 5 1 . 6 3 . # websense bandwidth was te r

4 deny from 8 7 . 2 3 3 . 3 1 . 4 5 # bo t r i p s way too f a s t

5 deny from 4 6 . 1 3 4 . 2 0 2 . 8 6

6

7 deny from paypa l . com

8 deny from a p p l e . com

9

10 Re wr i t eEn g ine on

11

12 RewriteCond %{HTTP REFERER} g o o g l e \ . com [NC, OR]

13 RewriteCond %{HTTP REFERER} f i r e f o x \ . com

14 R e w r i t e R u l e . ∗ ´ [ F ]

15

16 RewriteCond %{HTTP USER AGENT} ˆ g o o g l e b o t

17 R e w r i t e R u l e ˆ . ∗ ´ [ F , L ]

Listing 3.1: Partial .htaccess �le with all four types of blacklist �lters and real com-

ments le� by phishers.
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All Files (2313) Unique Files (153)
Approach Filter Type

Filter Count Files w/ Filter Filter Count Files w/ Filter

Blacklist Deny IP 1,046,397 2194 234,125 98

Blacklist Hostname 16,540 913 794 76

Blacklist Referrer 4,177 572 976 48

Blacklist User Agent 111,255 462 11,904 41

Whitelist Allow IP 315,907 9 94,515 5

Table 3.1: Occurrence of di�erent �lter types in the .htaccess �les.

3.2.2 Cleaning the Data

Because .htaccess �les consist of plain text and generally contain one directive per line,

they are straightforward to parse. I started by identifying duplicate �les in the dataset

a�er stripping comments and empty lines (I preserved inline comments as metadata for

later analysis). �is le� 153 (6.6%) unique .htaccess �les out of the total of 2,313. Of these

unique �les, 73 were seen only once, 66 appeared an average of 7.5 times, and 14 outliers

appeared an average of 124 times. �e outliers were a�ributable to a handful of kits with

a large number of sub-directories that all contained the same .htaccess �le.

I then identi�ed syntactic variations of directives with the same semantics (such as IP

block rules) and iterated through each .htaccess �le to obtain an aggregate overview of

its �lters.

3.2.3 Filter Types and Frequency

I discovered �ve di�erent major types of �lters used in the .htaccess �les, distributed

as shown in Table 3.1. �e most common deny IP �lter takes a blacklist approach to block

requests from speci�c IP addresses, partial IP addresses, or CIDR ranges [108]; at least one

such rule was present in 64% of the unique �les and 95% of all �les. �ree other blacklist

�lters checked the client’s hostname, referring URL, or user agent string to deny requests
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matching the speci�ed strings. On the opposite end of the spectrum, the allow IP �lter

took a whitelist approach to grant access only to speci�c IP addresses. In the case of my

dataset, the allow IP �lter was only present in a handful of �les that performed geolocation

to restrict tra�c to single countries. �e four blacklist �lters provide insight into the

speci�c entities that phishers are trying to exclude. On the other hand, the whitelist �lters

instead reveal the location of the victims of the phishing scam.

In addition to these �lters, I found that 30% of the unique .htaccess �les, and 61% of

all �les, limited HTTP request methods to GET and POST. For the sake of completeness,

other less interesting directives included the speci�cation of an index script, disabling of

server-level directory indexes, and allowing only requests for certain �le extensions. �e

disabling of indexes can serve as a deterrent to the scanning of phishing websites (and,

potentially, victim data or phishing kit archives) by anti-phishing crawlers.

Organizations of Interest

In this section, I discuss the nature of the blocked IP addresses, hostnames, referring URLs,

and user agents as I unmask why phishers selected them as part of their �ltering strategy.

IP Address

I identify the entity targeted by each IP address through a variety of techniques: per-

forming a reverse DNS lookup to obtain the hostname, visiting the IP, querying an ISP

or IP geolocation database (I used IP2Location and GeoLite2, respectively [59, 79]), and

manually interpreting the comments le� behind by phishers. For some 4,300 IP addresses

out of the total of 29,971 unique blacklisted IPs I extracted, phishers included a comment

describing the entity believed to be tied to the address. �ese comments could be found in

23% of the �les in the dataset. Examples of IP �ltering and the corresponding comments

are found in Listing 3.1.
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Figure 3.1: Distribution of blocked IPs in the United States.

Figure 3.2: Distribution of blocked IPs worldwide.

In my analysis, I combined all of these techniques to obtain as much information as

possible about each IP address. For each IP address in the dataset, I recorded the frequency

as well as the associated entity. I then categorized these entities based on their primary

business type.

Analysis of the data revealed that the phishers developing these .htaccess �les focus

heavily on blocking requests from web hosts, web crawlers, and internet service providers,

with a secondary focus on security companies, universities, and organizations involved

in DNS administration. Per the GeoLite2 database, over 90% of the unique IP addresses
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in the dataset were located in the US, with approximately half originating in tech-heavy

California, as shown in the maps in Figures 3.1 and 3.2. Areas with concentrations of

blocked IPs coincide with the headquarters or data centers of major organizations involved

in internet security.

Avoiding tra�c from these entities is important to phishers because detection by a

web host might lead to deactivation of the platform hosting the phishing website or iden-

ti�cation of the person behind the a�ack [94]. Detection by a search engine crawler or

security company would likely result in blacklisting of the phishing content, which could

terminate the phishing campaign before the phisher �nishes his or her work [51]. Gener-

ally speaking, the phisher does not want anyone but the victims to be able to access the

phishing page.

I can conclude that phishers make a considerable e�ort to identify and a�empt to by-

pass the anti-phishing infrastructure being used against them. While this dataset does not

allow us to make any measurements of the e�ectiveness of phishers’ evasion e�orts, the

security industry can regardless respond by using a diverse and ever-changing network

of systems and IP addresses.

Hostname

By total count, �ltering by hostname (of the IP address of the user making the HTTP

request) was the least common �lter type in the dataset. �is rarity is likely because

such �lters require the server to perform a reverse DNS lookup for every HTTP request

which is costly in terms of time and could impact the availability of the phishing website.

However, nearly half of the unique .htaccess �les contained at least one hostname �lter,

suggesting that phishers trust their e�ectiveness.

Hostname �lters showed a heavy bias toward the victim organizations as well as anti-

phishing organizations, and also included some antivirus vendors. Some were designed
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to match keywords that might be present in a security-related hostname, such as “phish,”

“spam,” or “.edu.”

�is �lter can be evaded by ensuring that no PTR reverse DNS record is con�gured for

the IP address accessing the kit, or that the record is not revealing.

Referrer

When a human makes a web request by following a link in a browser, the browser will

typically transmit the URL of the referring web page in the Referer HTTP header [40] of the

new request. For instance, if an employee at a security company were to manually verify a

phishing URL by clicking on a link in an e-mail or internal database, the company’s name

may be revealed in the referring URL. Phishers can take advantage of this behavior by

blocking requests containing certain referring URLs, as shown in Lines 12–14 of Listing

3.1.

I found that the referrer �lters focused exclusively on antivirus companies, security

companies, and blacklist providers. �ese �lters merely contained the primary public

domain of these companies (e.g., google.com or mcafee.com), which suggests that phishers

may have been guessing rather than basing these �lters on known referrers.

�e anti-phishing industry can easily bypass such �ltering by con�guring browsers or

crawlers used for phishing detection to never transmit referrer information or to transmit

a benign-looking URL.

User Agent

�e user agent string (de�ned in RFC 2616) identi�es the so�ware issuing the HTTP re-

quest on behalf of the user, such as a browser or robot [40]. In the dataset, user agent

�lters were used exclusively to block known web crawling and scraping so�ware.
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Table 3.2: �e most commonly observed entities in the .htaccess dataset.

Frequency Ecosystem Entity Type

257 Google
Crawler

Blacklist

96 PayPal Victim Org.

91 Internet Identity Security

81 Bit Defender Security

49 McAfee Antivirus

42 Forcepoint Security

42 Mark Monitor Security

39 Brand Protect Security

37 Looking Glass Cyber Security

35 AVG Antivirus

34 Eset Antivirus

33 Kaspersky Antivirus

27 Firefox / Mozilla Browser

25 TrendMicro Antivirus

22 Apple Victim Org.

21 Symantec Antivirus

21 Netcra� Security

20 F-secure Antivirus

19 Dr. Web Antivirus

15 Avast Antivirus

14 Avira Antivirus

14 ClamAV Antivirus

12 Spamcop Security

11 Yandex Crawler

11 Comodo Security

10 Microso� Blacklist

10 PhishTank Security
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Lines similar to 16–17 in Listing 3.1 were commonly found in the dataset and seek

to block the Google crawler. I identi�ed no other references to the anti-phishing entities

that I saw in prior �lters. �is absence suggests that although phishers certainly wish to

prevent automated tools (such as wget or a so�ware library) from fetching their websites,

they perhaps do not know the speci�c user-agent strings used by security infrastructure,

or they know how trivially these can be changed. Regardless, because the user agent string

can be spoofed, phishing blacklist crawlers can and should frequently take advantage of

varying the user agent in their requests.

3.2.4 Combined Summary

In Table 3.2, I summarize the most frequently observed entities in the dataset of 153

.htaccess �les, speci�cally those with ten more distinct appearances. I aggregated the data

by assigning a unique identi�er to each entity, then combined the total number of occur-

rences of each entity within each �lter type. Many of the entities listed are of integral im-

portance in the anti-phishing landscape. Of particular note are Google Safe Browsing and

Microso� SmartScreen, which operate the blacklists that natively protect Google Chrome,

Safari, Firefox, Internet Explorer, and Edge, and account for over 97% of global desktop

tra�c as of August 2017 [119]. Similarly, it is no surprise that PayPal and Apple appeared

in this list as these companies ranked second and third as the most targeted brands in the

APWG dataset, respectively, and were common victims in prior studies of phishing kits

by Cova et al. [22] and Han et al. [51]. �e large, user-driven anti-phishing community

PhishTank saw a disproportionately low representation in .htaccess �les, possibly due to

the distributed nature of the community [29].

It is evident that phishers work hard to thwart anti-phishing e�orts by evading detec-

tion to ultimately bypass the defenses o�ered by blacklists, security �rms, and antivirus

vendors. Furthermore, it is arguably eye-opening that such a clear picture can be painted
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from data created by and known to phishers. At the same time, the .htaccess data does

show some cracks: �lters in older kits (discussed in the following section) lag behind

in the past, as many references are made to defunct companies or companies that have

merged with others within the past two years. Measuring the true e�ectiveness of phish-

ers’ �ltering techniques within the ecosystem is an interesting research problem; I propose

methodology for doing so in Chapter 4.

3.2.5 Phishing Kit Sharing and Age

I found that, on average, 87 days elapsed between the �rst and the last retrieval of

the duplicate .htaccess �les discussed in Section 3.2.2. Furthermore, almost every kit was

retrieved from a distinct domain. I can thus conclude that phishing kits see regular re-use,

potentially as part of a single phisher’s campaign.

Frequent phishing kit re-use is further supported by analyzing the modi�cation date

metadata of the .htaccess �les. �e majority of �les were last modi�ed over a year before

deployment, as shown in Figure 3.3. Interestingly, a handful of kits dated as far back as

2009. Regular changes to the con�guration of anti-phishing infrastructure would quickly

render the �ltering e�orts in such kits obsolete.

3.3 Analysis of Phishing URLs

Cleverly chosen URLs can be used by phishers to deceive victims or to make a phish-

ing page appear benign in the absence of other contextual data. In this section, I propose

an up-to-date classi�cation scheme that re�ects the latest trends in phishing URLs, as

motivated by evolving social engineering techniques that are aided by speci�c URL con-

tents. Moreover, I show that analyzing the domain age alongside the classi�cation of

these URLs can reveal information about the infrastructure being used to host phishing

content. Pa�erns in phishing URLs have been shown to allow for automated classi�ca-
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Figure 3.3: Histogram of .htaccess �le modi�cation dates.

tion and detection of phishing content, as studied in the work discussed in Section 3.4, and

such classi�cation can be enhanced by considering recent developments in URL cra�ing

and understanding the intent behind each type of phishing URL.

3.3.1 Dataset Overview

�e APWG has been monitoring trends in phishing and other cybercrime since 2003.

A�er the explosion in the volume of phishing a�acks in the early- to mid-2010s, the APWG

launched its online eCrime Exchange database, which is a platform—available to APWG

members—through which organizations engaged in anti-phishing can share detections of

Phishing URLs. As of mid-2017, this database contained over 2.7 million real-world phish-

ing a�acks reported since 2015. Each entry consists of a phishing URL, the organization

targeted, the date the a�ack was detected, and a con�dence score. I focus on 172,620

URLs submi�ed during the �rst six months of 2017, which I fetched from the database on

a daily basis and annotated with the domain registration date based on WHOIS data [78].

I further narrow my focus to traditional phishing URLs (i.e., those hosted on web servers)
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Type I IP address as hostname, deceptive path contents

(a) h�p://66.196.233.2/www.paypal.com/webscr.html?cmd= login-run

(b) h�p://93.182.172.145/info/Verify.php?=&securessl=true

Type II Random domain, deceptive path contents

(a) h�p://resqplus.net/css/ssl/secure.paypal.com.au/au/cgi-bin/webscr/

(b) h�p://www.nae4ha2012.com/logos/login/secure.my.private-se�ings.support

Type III Long, deceptive subdomain

(a) h�p://statements.visa.com.upetkiti.be/cards/myvisa/transactionsphp

(b) h�p://h�ps.secure.update.customer-update.extrasecure.pro�lecontinue.charityliberia.org/

Type IV Deceptive domain name

(a) h�p://change-paypal.com/ma/webapps/mpp/home/

(b) h�p://support-center-con�rm.com/support/Payment-update-0.html

Type V Unintelligible URL

h�p://o�o.net/5d8ucl/?action=redirect&nick=5d8ucl&m=1

h�p://69.93.204.33/„startrac/cash69.html

Table 3.3: High-level classi�cation scheme for phishing URLs, with examples from the

APWG dataset.

rather than social media URLs or redirection links, which are also recorded by the APWG

but may not be directly indicative of individual phishing websites [19].

A key aspect of this dataset is that each URL is paired with the targeted organization,

which possible because these URLs are primarily submi�ed to the database by agents

of the organizations themselves. �ese agents may also use classi�cation techniques to

con�rm the presence of brand names or logos on the corresponding phishing websites.

�e pairing of URLs with brands allows us to reliably identify the presence of the brand

within each URL’s hostname or path, and, thus, I address a limitation of phishing URL

datasets used in prior work [22, 114].
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A�er removing partial URLs without a hostname, social media URLs, and entries with

a con�dence score below 100%, I parsed each URL to generate additional a�ributes: the

path, hostname, domain name, top-level domain (TLD), and subdomain level [87]. I then

removed hostnames as duplicates if they di�ered only in the presence of a hash or user ID

in the subdomain, a common technique employed by phishers to evade blacklist hits [51].

�is pruning le� 66,752 unique hostnames. Finally, I used substring extraction [109] to

identify common tokens in the URLs and manually classi�ed them as brand if they ap-

peared similar to the targeted brand name or misleading if their meaning was related

to online account security and could potentially be misleading to a user (e.g., “secure,”

“h�ps,” “service”, “support”). A�er classifying all the individual tokens, I created two bi-

nary parameters to indicate their presence in the path and hostname, respectively, of each

URL. With these parameters, I could then semantically classify the nature of each URL as

a whole.

3.3.2 Classifying Phishing URLs

Using the a�ributes I added to the URL dataset, I propose a phishing URL classi�cation

in Table 3.3 that builds on the model of Garera et al. [41], an early and now outdated

classi�cation that identi�ed four di�erent types of hostnames in a phishing URL.

In an e�ort to comprehensively capture recent and emerging pa�erns in phishing

URLs, I identify URLs as one of �ve mutually exclusive semantic types by looking at both

the hostname and path. Types I through IV are divided into a further two sub-types: the

more common (a) for URLs recognizably containing the brand name, or (b) URLs con-

taining misleading keywords. Both sub-types aim to trick a user to visit the URL. It was

common for the (a) sub-type to contain a slight misspelling of the brand such as “pay-

pol” instead of PayPal or “appel” instead of Apple. In this manner, a�ackers can directly

register deceptive domain names and, additionally, perform typosqua�ing [122]. Such do-
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mains may also evade heuristic classi�ers that expect the exact brand name [64] or speci�c

keywords [138].

Apart from the introduction of the two sub-types for each, Type I, II, and III URLs are

otherwise unchanged compared to Garera et al.’s classi�cation [41]. Type IV URLs contain

a deceptive domain name registered by the phisher. Type V URLs are unintelligible in the

absence of other metadata and contain a seemingly random hostname (which can be either

a domain or IP address) and no brand or deceptive keywords.

Most browsers show the URL of the current page to the user, but the way the URL

is displayed di�ers across browsers. Phishers may thus opt for a speci�c URL type de-

pending on the targeted browser or platform. For example, the Google Chrome desktop

browser highlights the domain name, so a Type IV URL might appear legitimate to unsus-

pecting users. A Type III URL would be suitable for a mobile browser that only shows the

�rst several characters of the URL due to screen width limitations [131]. For instance, a

domain name of fakesite.com would not be visible in the displayed portion of a URL such

as www.paypal.com.signin.fakesite.com when viewed on a small screen. A Type I, II, or III

URL would be appropriate for display in e-mails, due to the possibility of long deceptive

strings spanning much of the URL. Finally, a Type V URL can be advantageous for evading

detection tools that check for speci�c pa�erns. �us, I have identi�ed not only technical

reasons for URL selection, but also motivations deeply rooted in social engineering.

In the entire dataset, I identi�ed 156 Type I, 6,899 Type II, 4,186 Type III, 14,289 Type IV,

and 41,213 Type V URLs. However, these numbers are far more meaningful when viewed

alongside the age of the domain name within the la�er four URL types, as discussed in

the following section.
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3.3.3 New vs. Compromised Infrastructure

Although URL content and domain age have historically been used in phishing website

classi�ers based on machine learning, other heuristic a�ributes based on web page content

and search engine metadata have proven to be much stronger indicators of a phishing

a�ack [138]. �erefore, rather than using the URL type and domain solely to identify

phishing a�acks, I propose a di�erent use for these a�ributes: inferring the underlying

hosting infrastructure, which can then be leveraged to mount an appropriate incident

response by anti-phishing entities (a�er a URL has been con�rmed to contain phishing).

I found that 28.9% of the URLs in the dataset were reported within 1 month (30 days)

of the domain registration, while another 53.3% of URLs had domains older than a year.

�e remainder was fairly uniformly split between 1 and 12 months. �ese �ndings are

consistent with Hao et al.’s analysis of spam URLs distributed via e-mail [53] and show that

a�ackers’ use of compromised infrastructure remains a signi�cant problem. Although it

is tempting to outright conclude that old domains belong to benign websites that have

been compromised, a much stronger case can be made if I also consider URL classi�cation

along with the requirements to deploy each URL type.

In Figure 3.4, I plot the domain age versus the URL type in the APWG dataset. I

�nd that Type IV (deceptive domain) URLs are the most common in newly-registered

phishing domains, and that Type III (long subdomain) URLs also occur more frequently

with new domains. As domains age, the frequency of Type II (deceptive path) and Type

V (unintelligible) URLs increases signi�cantly while other types decline. Type I URLs are

omi�ed from the �gure as IPs do not have registration dates, unlike domains; they were

also rare in the dataset as a whole (0.23% of unique URLs).

Type I, II, and V URLs only rely on the folder structure of uploaded �les, which can

easily be controlled directly by phishing kits. Exploiting a web vulnerability to upload a
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Figure 3.4: Impact of domain age on the distribution of URL types (Type II: random domain

with a deceptive path; Type III: deceptive subdomain; Type IV: deceptive domain name;

Type V: unintelligible URL).

phishing kit would grant the access necessary to deploy such URLs. On the other hand,

a typical web hosting environment requires DNS changes for con�guring Type III and

Type IV domains; such access would necessitate a larger-scale breach for deployment on

a compromised system. I, therefore, hypothesize that older Type II and Type V phishing

URLs generally represent compromised infrastructure, while newer Type III and Type IV

URLs are more likely to be found on infrastructure deployed by phishers. Although I do

not verify this correlation, a future study involving a dataset with a�ributes such as the

content and search engine rankings of each URL could be used to de�nitively classify the

underlying infrastructure.

An intriguing case is my observation of a small proportion of Type IV URLs with do-

mains older than 1 year. Because paid domain names must be renewed annually, it would

not make economic sense for a phisher to pay renewal fees prior to using the domain name

for the �rst time. A�er analyzing the TLD distribution of these URLs, I found that nearly
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all of these domains had free ccTLDs including .tk, .ga, .ml, .cf, and .gq. Such domains

are owned by the registrar rather than the phisher and can o�en be renewed for free or

re-acquired for free following expiration; a clear secondary advantage is their anonymity,

because no payment details need to be provided by a�ackers. A handful of outliers within

these URLs included legitimate websites that happened to contain a commonly-phished

brand name, such as apple-medical.com1. Type IV URLs consisted of 41.8% .com domains

(lower than the 47.0% for the entire dataset) and 14.6% of the aforementioned ccTLDs

(higher than the 5.1% dataset average). It is also worth noting that these ccTLDs are

administered by only a handful of commonly-abused registrars, which may aid in the

mitigation of any corresponding domains used by phishers.

In this dataset, .coms dwarf the second most common TLD, .net, which accounted for

only 3.6% of URLs. Full TLD statistics for this dataset are publicly available from the

APWG [4].

3.4 Related Work

�e work most closely related to my analysis is that of �omas et al. [125], who car-

ried out a comprehensive study of the underground credential re-use ecosystem. As part

of their study, the authors brie�y discuss web cloaking through IP address blacklists in

.htaccess �les found in phishing kits, but they do not delve into speci�c details. Cova

et al. [22] performed an analysis of phishing kits freely available through underground

sources or le� behind by phishers as archives on live websites. �e authors focused on

identifying backdoors in these free phishing kits and found trends in e-mail provider us-

age, victimization, drop technique, and URL type. While they considered URL obfuscation

techniques implemented through PHP code as a blacklist deterrent, they did not analyze
1Such domains could represent false-positive phishing detections, or may have been speci�cally targeted

by a�ackers for subsequent use in phishing.

39



if the kits performed request �ltering. Han et al. [51] collected a large dataset of phishing

kits through a honeypot server to study the anatomy and timeline of phishing a�acks

in great detail, which is important in understanding how to best respond to a phishing

a�ack.

Much prior research has studied URLs used for phishing a�acks. Hao et al. [53] ana-

lyze the domain registration behavior of real phishers and reveal commonly abused reg-

istrars. Garera et al. [41] provide a high-level classi�cation scheme for phishing URLs.

Further studies developed e�ective machine learning techniques to perform the classi�-

cation itself [13, 38, 138] in order to automatically identify malicious websites on a large

scale. Such systems are among those that respond to phishing content reported to the

security community [136]. With the boom of social media in recent years, shortened redi-

rection URLs and social media links have also seen prominent use in phishing, as studied

by Chhabra et al. [19].

To the best of my knowledge, no prior work has analyzed .htaccess �les in detail in the

context of phishing. With respect to phishing URLs, I expand on the classi�cation of Gar-

era et al. [41] by introducing a new URL type frequently observed in the APWG dataset,

and I combine methodology originally proposed by Matsuoka et al. [78] to further identify

the URLs deployed on compromised infrastructure. My datasets are unique because they

are based entirely on real-world, live phishing a�acks and contain metadata which has

been carefully curated.

3.5 Discussion

Server-side request �ltering can easily be deployed through .htaccess �les placed in-

side distributable phishing kits, which spread quickly due to their appeal to phishers with

limited programming knowledge. Fortunately, countermeasures exist for each �ltering

technique, as discussed in Section 3.2.
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As web browsers and anti-phishing technologies continue to mature, phishers respond

by adapting their URLs for maximum e�ectiveness against their victims while simulta-

neously aiming to avoid detection. Automated phishing website classi�cation systems

should likewise adapt to detect more subtle phishing URLs with partial brand names, ho-

mographs, and deceptive keywords. �e generic URL classi�cation scheme that I propose

addresses common modern-day social engineering techniques and can be used as a part of

such automated systems. Speci�cally, while modern web browsers leverage native anti-

phishing blacklists to protect users from known malicious URLs, classi�cation based on

the URL alone is not widely used [138]. My �ndings could be used to reduce the potential

false-positive rates of such classi�cation by considering a�ributes that might explain the

use of a speci�c URL type, such as the device or browser used in the request.

Continuous monitoring of recent phishing URLs can further re�ne my URL classi�-

cation scheme over time by identifying changing trends. With the evolution of the use of

social media platforms and URL shortener services in phishing [19], future analysis should

also focus on how these new platforms are used alongside traditionally-hosted phishing

websites (I perform preliminary work in this direction in Chapter 6).

�e URL-based a�ributes that I have identi�ed could be incorporated alongside ex-

isting detection techniques such as passive DNS [135] in order to respond during earlier

stages of a phishing campaign, or with greater con�dence. Also, considering the age of the

domain along with the URL’s classi�cation can help determine whether a legitimate web-

site has been compromised and would allow for an appropriate response by the hosting

provider. Finally, the ecosystem could leverage URL-based predictions about the intended

phishing victims in an a�empt to bypass some of the server-side �ltering techniques dis-

cussed in Section 3.2.

Phishers rely heavily on compromised infrastructure to carry out their work, but they

also obtain their own domains through key bo�lenecks including .com registrars and free
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domain providers. Further e�orts should be focused on quickly detecting and responding

to malicious registrations, especially when no payment is required. With access to their

own domains, phishers otherwise have full �exibility when it comes to cra�ing a deceptive

URL.

3.6 Limitations

My �ndings should be considered with certain limitations in mind. �e APWG database,

while large and maintained by security professionals, is skewed toward organizations [4]

that directly or indirectly partner with the APWG. It contains malicious URLs reported

by the community, which are a subset of all phishing a�acks, and may be skewed toward

URLs detectable based on the methodology used by this community. Also, we must trust

the con�dence levels assigned by APWG submi�ers as an indication that the phishing

URL listed was a true positive, because in many cases, the phishing content has already

been removed by the time a URL appears in the database, so it cannot be re-veri�ed.

�e Cofense dataset is a year older than the APWG dataset. However, Cofense uses

a brand-agnostic approach to verifying and documenting phishing a�acks which is di-

vorced from its customer list. While many or even most phishing websites may contain

.htaccess �les, once deployed, a .htaccess �le is not retrievable via a web request. �us,

I have only analyzed those �les which were found in phishing kit archives that could be

retrieved from live phishing websites (i.e., those found zip �les that a phisher uploaded

to a web server, and subsequently extracted). Consequently, it is also possible that the

.htaccess �les ultimately deployed on phishing websites could di�er from those retrieved

by Cofense, though this is limitation partially o�set by the sheer size and diversity of the

dataset.

Despite their potential shortcomings, datasets such as those I considered in this chap-

ter are highly relevant to the landscape of modern phishing a�acks. �ese datasets cor-
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respond to the organizations most commonly targeted by phishers and therefore warrant

future analysis by the research community. Furthermore, given my �nding that phish-

ers’ �ltering techniques target the most prominent entities involved in the �ght against

phishing, future datasets built collaboratively from multiple sources could prove to be

even more eye-opening.

3.7 Summary

In this chapter, I have studied server-side request �ltering techniques employed in

phishing kits, which has painted a picture of the anti-phishing ecosystem from the per-

spective of criminals. I observed that the ecosystem spreads far beyond just the victims

and organizations that phishers target, yet these phishers have a keen awareness of the

tools being used against them by the security community. Phishers seek to maximize

their return-on-investment by avoiding detection by tools they know of, increasing the

volume of a�acks by using compromised infrastructure when possible, and bolstering the

e�ectiveness of a�acks by registering highly-deceptive domain names (preferably at no

cost) to trick their victims. Security researchers and all involved entities must under-

stand phishers’ tactics to be able to respond appropriately to thwart them before phishing

methodology evolves further.

It is clear that phishers have a wide gamut of paths available to them when it comes to

deploying their a�acks. My study provides the building blocks for an enhanced, custom-

tailored response to phishing a�acks that can be aided by automated technologies. Iden-

tifying a URL as malicious is only a basic �rst step. By combining my URL classi�cation

scheme and analyzing domain age, we can pro�le not only where a phishing a�ack likely

originated in terms of infrastructure, but also why that URL was chosen. Building on my

.htaccess �ndings, a crawler that is able to bypass and pro�le server-side �ltering e�orts

can then reveal information about who was targeted for a faster detection response time.
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Knowing this information will allow anti-phishing e�orts to focus on the most e�ective

response, potentially saving the ecosystem time and money while improving the security

of the end-user.

In the next chapter, with motivation from the �ndings in my analysis of .htaccess eva-

sion techniques, I measure how e�ectively key security organizations in the anti-phishing

ecosystem (from Table 3.2) implement countermeasures to phishers’ a�empts at evasion,

with a focus on the real-world security of the end-user. If anti-phishing tools do not ef-

fectively bypass (i.e., defeat) request �ltering, a�acks may not be detected or stopped in

a timely manner. In turn, phishers would be able to pro�t by wreaking havoc upon their

victims.
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Chapter 4

PHISHFARM: A FRAMEWORK FOR MEASURING EVASION OF ANTI-PHISHING

BLACKLISTS

4.1 Introduction

Today’s major web browsers, both on desktop and mobile platforms, natively incor-

porate anti-phishing blacklists and display prominent warnings when a user a�empts to

visit a known malicious website. Due to their ubiquity, blacklists are a user’s main (and,

at times, only) technical line of defense against phishing. Unfortunately, blacklists suf-

fer from a key weakness: they are inherently reactive [114]. �us, a malicious website

will generally not be blocked until its nature is veri�ed by the blacklist operator. As we

observed in the last chapter, phishing websites actively exploit this weakness by lever-

aging evasion techniques known as cloaking [58] to avoid or delay detection by blacklist

crawlers. Cloaking has only recently been scrutinized in the context of phishing [102];

previously, there have been no formal studies of the impact of cloaking on blacklisting

e�ectiveness (despite numerous empirical analyses of blacklists in general). �is short-

coming is important to address, as cybercriminals could potentially be causing ongoing

damage without the ecosystem’s knowledge.

In this chapter, I carry out a carefully controlled experiment to evaluate how ten dif-

ferent anti-phishing entities respond to reports of phishing websites that employ cloaking

techniques representative of real-world a�acks. I measure how this cloaking impacts the

e�ectiveness (i.e., website coverage and speed) of native blacklisting across major desktop

and mobile browsers. I performed preliminary tests in mid-2017, disclosed my �ndings to

key entities (including Google Safe Browsing, Microso�, browser vendors, and the APWG),
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and conducted a full-scale retest in mid-2018. Uniquely and unlike prior work, I created

my own (innocuous) PayPal-branded phishing websites (with permission) to minimize

confounding e�ects and allow for an unprecedented degree of control.

My study revealed several shortcomings within the anti-phishing ecosystem and un-

derscores the importance of robust, ever-evolving anti-phishing defenses with good data

sharing. �rough my experiments, I found that cloaking can prevent browser blacklists

from adequately protecting users by signi�cantly decreasing the likelihood that a phish-

ing website will be blacklisted, or substantially delaying blacklisting, in particular when

geolocation- or device-based request �ltering techniques are applied. Moreover, I iden-

ti�ed a gaping hole in the protection of top mobile web browsers: shockingly, mobile

Chrome, Safari, and Firefox failed to show any blacklist warnings between mid-2017 and

late 2018 despite the presence of security se�ings that implied blacklist protection. As a

result of my disclosures, users of the aforementioned mobile browsers now receive pro-

tection comparable to that of desktop users, and anti-phishing entities now be�er pro-

tect against some of the cloaking techniques I tested. I propose a number of additional

improvements that could further strengthen the ecosystem, and I will freely release the

PhishFarm framework to interested researchers and security organizations for continued

testing of anti-phishing systems and potential adaptation for measuring variables beyond

just cloaking. �us, the contributions of this chapter are as follows:

• A controlled empirical study of the e�ects of server-side request �ltering (cloaking)

on blacklisting coverage and speed in modern desktop and mobile browsers.

• A reusable, automated, scalable, and extensible framework for carrying out my ex-

periments.

• Identi�cation of actionable real-world limitations in the current anti-phishing ecosys-

tem.
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• Disclosures to anti-phishing entities which led to enhancements to blacklisting in-

frastructure, including more reliable phishing protection in the mobile versions of

Chrome, Safari, and Firefox.

4.2 Background

Phishing a�acks are ever-evolving in response to ecosystem standards and may in-

clude innovative components that seek to circumvent existing mitigations. A current

trend (mimicking the wider web) is the adoption of HTTPS by phishing websites, which

helps them avoid negative security indicators in browsers and may give visitors a false

sense of security [61, 137]. At the end of 2017, over 31% of all phishing websites reported

to the APWG used HTTPS, up from less than 5% a year prior [5]. Another recent trend

is the adoption of redirection links, which allows a�ackers to distribute a link that di�ers

from the actual phishing landing page. Redirection chains commonly consist of multiple

hops [121, 123], each potentially leveraging a di�erent URL shortening service or open

redirection vulnerability [25]. Notably, redirection allows the number of unique phish-

ing links being distributed to grow well beyond the number of unique phishing websites,

and such links might thus be�er slip past spam �lters or volume-based phishing detec-

tion [136]. Furthermore, redirection through well-known URL shortening services such

as bit.ly may be�er fool victims [19], though it also allows the intermediaries to enact

mitigations.

Ultimately, phishers cleverly a�empt to circumvent existing controls in an e�ort to

maximize the e�ectiveness of their a�acks. �e anti-phishing community should seek

to predict such actions and develop new defenses while ensuring that existing controls

remain resilient.
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Figure 4.1: Phishing warning in Google Chrome 67.

4.2.1 Browser Blacklists

Native browser blacklists are a key line of defense against phishing and malware web-

sites, as they are enabled by default in modern desktop and mobile web browsers and thus

automatically protect even unaware users against threats known to the blacklist provider.

When a user tries to visit a phishing website that has been blacklisted, a prominent warn-

ing will be shown in place of the phishing content, thus protecting the user from the a�ack.

Figure 4.1 depicts what the user might see when trying to visit a blacklisted website in

Google Chrome (other browsers display similar warnings). In addition to the user-facing

warnings found in browsers, blacklists have extensive backend infrastructure which de-

tects and classi�es phishing websites.

Today’s major web browsers are protected by one of three di�erent providers: Google

Safe Browsing, Microso� SmartScreen, or Opera. While Google Safe Browsing (GSB) and

SmartScreen are well-documented standalone blacklists, Opera relies on third-party part-

ners including PhishTank and Netcra� [111] to provide feeds of malicious websites.
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�ere exist two other major blacklists with a lower global market share but which

are prominent in speci�c countries [95]: Tencent Security, which protects the QQ browser

(and Safari within China) [124], and Yandex Safe Browsing, which protects the Yandex

browser [140]. In my experiments, I do not consider these blacklists, nor do I consider

other anti-phishing systems which are not enabled by default in browsers, such as those

only accessible via a browser plugin, third-party API, or antivirus so�ware [101]. How-

ever, my methodology could be applied to evaluate these alternatives.

To the best of my knowledge, certain less prominent browsers, such as UC Browser,

Samsung Internet, and Android Browser do not currently include native anti-phishing

protection.

4.2.2 Browser Blacklist Operation

In the absence of third-party security so�ware, once a phishing message reaches and

fools a potential victim, browser blacklists are the only technical control that stands be-

tween the victim and the display of the phishing content. Studies have shown that black-

lists are highly e�ective at stopping a phishing a�ack whenever a warning is shown [114].

Such warnings are prominent but typically appear a�er the blacklist operator’s backend

web crawling infrastructure veri�es the a�ack (some blacklists also leverage browser-

based heuristics [114]). �us, blacklists are inherently a reactive mitigation.

Blacklists face a di�cult challenge: they must operate quickly and minimize false pos-

itives (to avoid disrupting legitimate websites) without allowing malicious content to go

undetected. We know that blacklists are e�ective when they function as intended [99],

but due to their reactive nature, they can be exploited through evasion techniques within

phishing kits. If timely blacklisting does not occur, many users can be le� vulnerable to

a�acks until (slower) secondary mitigations such as take-down occur [1, 89].
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Est. Market Share

(Worldwide) [119, 120]Browser Name

Phishing

Blacklist

Provider 7/2017 7/2018

Desktop Web Browsers

Google Chrome* 63.48% 67.60%

Mozilla Firefox* 13.82% 11.23%

Safari*

Google

Safe Browsing

(GSB) 5.04% 5.01%

Internet Explorer (IE)* 9.03% 6.97%

Microso� Edge*

Microso�

SmartScreen 3.95% 4.19%

Opera* Opera 2.25% 2.48%

Others Varies 2.43% 2.52%

Mobile Web Browsers

Google Chrome* GSB 50.07% 55.98%

Safari* GSB 17.19% 17.70%

UC Browser None 15.55% 12.49%

Samsung Internet None 6.54% 5.12%

Opera* (non-mini) Opera 5.58% 4.26%

Android Browser None 3.41% 1.95%

Mozilla Firefox* GSB 0.06% 0.31%

Others Varies 1.60% 2.19%

Table 4.1: Overview of the market share and blacklist providers of major web browsers

(* denotes browsers tested in this chapter).

Just as users rely on these blacklists to stay safe, security organizations rely on them

as an early part of their incident response process. If these blacklists fail to block mali-

cious content in a timely and e�ective manner, organizations may remain defenseless in

the short term as users fall victim to the a�acks. On the other hand, when blacklisting

succeeds, users remain protected while security organizations work to enact their more

permanent anti-phishing mitigations.
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4.2.3 Detecting Phishing

�e distribution phase of phishing a�acks is inevitably noisy, as links to each phish-

ing website are generally sent to a large set of potential victims. �us, the thousands of

phishing a�acks reported each month easily translate into messages with millions of re-

cipients [78]. Detection can also occur during the preparation and ex�ltration stages. As

artifact trails propagate through the security community, they can be used to detect and

respond to a�acks. Detection methods include spam e-mail classi�cation [32, 64], ana-

lyzing underground tools and drop zones [56], identifying malicious hostnames through

passive DNS [11], URL and content classi�cation [71, 136, 138, 142], malware scanning

by web hosts [17], monitoring domain registrations [53] and certi�cate issuance [31], and

receiving direct reports [1]. All of these potential detection methods can result in reports

which may be forwarded to anti-phishing entities that power blacklists [114].

For users to be properly protected from phishing, malicious content must be detected

in a timely manner so that it can be blacklisted or otherwise mitigated in the early stages

of an a�ack. I elaborate on the importance of timely mitigation in Chapter 6.

4.2.4 Cloaking

In the previous chapter, I found that phishing kits commonly use server-side directives

to �lter (i.e., block or turn away) unwanted (i.e., non-victim) tra�c, such as search engine

bots, anti-phishing crawlers, security researchers, or users in locations that are incom-

patible with the phishing kit [102]. A�ributes such as the visitor’s IP address, hostname,

user agent, or referring URL are leveraged to implement these �ltering techniques.

Similar approaches, known as cloaking, have historically been used by malicious ac-

tors to in�uence search engine rankings by displaying di�erent web content to bots than

human visitors [58]. Users follow a misleading search result and are thus tricked into visit-
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ing a website that could contain malware or adware. Relatively li�le research has focused

on cloaking outside of search engines; my experiment in Section 4.3 is the �rst controlled

study, to the best of my knowledge, that measures the impact of cloaking within phishing

a�acks. Because cloaking has the potential to evade (i.e., slow or prevent) the mitigation

provided by blacklists, it warrants further scrutiny.

4.3 Experimental Methodology

My primary research goal in this chapter is to measure how cloaking a�ects the oc-

currence and speed of blacklisting of phishing websites within browsers. On a technical

level, cloaking relies on �ltering logic that restricts access to phishing content based on

metadata from an HTTP request. As we saw in the previous chapter, �ltering is widely

used in phishing kits [102]; a�ackers aim to maximize their return on investment by only

showing the phishing content to victims rather than anti-abuse infrastructure. If a phish-

ing kit suspects that the visitor is not a potential victim, a 404 “not found”, 403 “forbidden”,

or 30x redirection response code [40] may be returned by the server in lieu of the phishing

page. A�ackers could also choose to display benign content instead.

Prior studies of browser blacklists have involved observation or honeypo�ing of live

phishing a�acks [51, 99, 114], but these tests did not consider cloaking. It is also di�-

cult to de�nitively identify cloaking techniques simply by observing live websites. My

experimental design addresses this limitation.

4.3.1 Overview

At a high level, I deploy my own (sterilized) phishing websites on a large scale, report

their URLs to anti-phishing entities, and make direct observations of blacklisting times

across major web browsers. I divide the phishing websites into multiple batches, each

of which targets a di�erent entity. I further sub-divide these batches into smaller groups
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with di�erent types of cloaking. Once the websites are live, I report their URLs to the

anti-phishing entity being tested, such that the entity sees a su�cient sample of each

cloaking technique. I then monitor the entity’s response, with my primary metric being

the time of blacklisting relative to the time I submi�ed each report. I collect secondary

metrics from web tra�c logs of each phishing website. My approach is thus empirical in

nature, however it is distinct from prior work because I fully control the phishing websites

in question, and, therefore, have ground truth on their deployment times and cloaking

techniques.

All the phishing websites that I used for all of my experiments spoofed the PayPal.com

login page (with permission from PayPal, Inc.) as it appeared in mid-2017 (I discuss the

hosting approach in Section 4.4.3). My phishing websites each used new, unique, and

previously-unseen .com domain names, and were hosted across a diverse set of IP ad-

dresses spanning three continents. As part of my e�ort to reliably measure the time be-

tween my report and browser blacklisting for each website, I never reported the same

phishing website to more than one entity, nor did I re-use any domains. To summarize,

each experiment proceeded as follows:

1. Selecting a speci�c anti-phishing entity to test.

2. Deploying a large set of new, previously-unseen PayPal phishing websites with de-

sired cloaking techniques.

3. Reporting the websites to the entity.

4. Measuring if and when each website becomes blacklisted across major web browsers.

I split my experiments into two halves: preliminary testing of ten anti-phishing enti-

ties (mid-2017) and full follow-up testing of �ve of the best-performing entities (mid-2018).
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�e la�er test involved a large sample size designed to support statistically signi�cant in-

ferences. In between the two tests, I disclosed my preliminary �ndings to key entities to

allow them to evaluate the shortcomings that I identi�ed. I discuss my approach in more

detail in the following sub-sections and present the results in Section 4.5.

Choosing Web Browsers to Evaluate

I strove to maximize total market share while selecting the browsers to be tested. In

addition to traditional desktop platforms, I wanted to measure the extent of blacklisting on

mobile devices—a market that has grown and evolved tremendously in recent years [131].

I thus considered all the major desktop and mobile web browsers with native anti-phishing

blacklists, as listed in Table 4.1.

Filter Types

I chose a set of request �ltering techniques based on the high-level cloaking strategies

from my study of .htaccess �les in phishing kits that I presented in Chapter 3 [102]. Ex-

haustively measuring every possible combination of request �lters was not feasible while

maintaining a large sample size. �erefore, I chose a manageable set of �ltering strategies

that I felt would be e�ective in limiting tra�c to broad yet representative groups of poten-

tial victims while remaining simple (for criminals) to implement and drawing inspiration

from the techniques found in the wild [58]. Table 4.3 summarizes my �lter selections.

It would not be responsible for me to disclose the exact conditions required of each

�lter, but I can discuss them at a high level. Filter A served as my control group; my ex-

pectation was for every website in this group to be blacklisted at least as quickly as other

websites. Filter B sought to study how well mobile-only phishing websites are blacklisted,

coinciding with the recent uptick in mobile users and phishing victims [5, 119]. Filters C

and D focus speci�cally on desktop browsers protected by GSB, which span the majority
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of desktop users today. I also included geolocation, which while not as frequent in the

wild as other cloaking types [102], is highly e�ective due to low detectability and char-

acteristics of spearphishing. A secondary motivation was to see how well entities other

than GSB protect this group. Filter E is the most elaborate, but it also directly emulates

typical real-world phishing kits. It is based on top .htaccess �lters from a large dataset

of recent phishing kits [102]. �is �lter seeks to block anti-phishing entities by hun-

dreds of IP addresses, hostnames, referrers, and user agents. Finally, Filter F only displays

phishing content if the client browser can execute JavaScript, which may defeat simple

script-based web crawlers. �is �lter is common in modern search engine cloaking [58].

Although today’s phishing kits tend to favor straightforward �ltering techniques (namely

approaches such as Filter E or geolocation), growing sophistication and adoption of cloak-

ing (and other types of evasion) is technically feasible and to be expected as a risk to the

anti-phishing ecosystem.

Tested Entities

In addition to the blacklist operators themselves, major clearinghouses, and PayPal’s in-

ternal anti-phishing system, I wanted to test as many of the other types of anti-phishing

entities discussed in Section 2.4 as possible. I started with a recently-published list of en-

tities commonly targeted for evasion by phishers [102]. I then made selections from this

list, giving priority to the more common (and thus potentially more impactful) entities

in today’s ecosystem. I had to exclude some entities of interest, as not all accept direct

external phishing reports and thus do not �t the experimental design. Also, I could not be

exhaustive as I had to consider the domain registration costs associated with conducting

each experiment. Table 4.2 summarizes my entity selections.
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Entity (Report Location) Report Type URLs

Full + Preliminary Tests

APWG (reportphishing@apwg.org) E-mail

40 (prelim.)

396 (full)

per entity

Google Safe Browsing ([44]) Web

Microso� SmartScreen ([84]) Web

PayPal (spoof@paypal.com) E-mail

PhishTank (phish-{username}@phishtank.com) E-mail

Preliminary Tests Only

ESET ([34]) Web

Netcra� ([97]) Web 40

per entityMcAfee ([80]) Web

US CERT (phishing-report@us-cert.gov) E-mail

WebSense (asa@websense.com) E-mail

10 Entities Total 2,380 URLs

Table 4.2: Entities targeted by my experiments.

Reporting

When the time came for us to report my phishing websites to each entity being tested, I

would submit the website URLs either via e-mail or the entity’s web interface (if available

and preferred by the entity). In all cases, I used publicly-available submission channels; I

had no special agreements with the entities, nor did they know they were being tested. In

the case of the web submission channel, I simply used a browser to submit each phishing

website’s exact URL to the entity. E-mail reports were slightly more involved, as the in-

dustry prefers to receive a�achments with entire phishing e-mails in lieu of a bare URL. I

thus used PayPal-branded HTML e-mail templates to create lookalike phishing messages.

Each message contained a random customer name and e-mail address (i.e., of a hypotheti-
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Cloaking Filter Name HTTP Request Criteria

A Control Allow all

B Mobile Devices
Allow if user agent indicates:

Android or iOS

C
US Desktop

GSB Browsers

Allow if IP country (is/is not) US and user agent indicates:

Chrome, Firefox, or Safari; and

Windows, Macintosh, or Linux; and

not Opera, IE, or Edge; and

not iOS or Android

D
Non-US Desktop

GSB Browsers

E
Block Known

Security Entities

Allow if user agent, referrer, hostname, and IP:

not known to belong to a security entity or bot

F
“Real” Web

Browsers

Allow all; content retrieved asynchronously

during JavaScript onload event

Table 4.3: Cloaking techniques used by my phishing websites.

cal victim) within one of many body templates. I sent e-mails from unique accounts across

�ve security-branded domains under my control.

Reports of real-world phishing websites might be submi�ed in an identical manner by

agents on behalf of victim brands. My reporting approach is thus realistic, though many

larger victim organizations contract the services of enterprise security �rms, which in

turn have private communication channels to streamline the reporting process.

4.3.2 Preliminary Tests

My preliminary testing took place in mid-2017 and carried out the full experimental

approach from Section 4.3.1 on a small scale. I will now detail the execution of each test.

One of my key goals was to minimize confounding e�ects on the experimental results.

In other words, I did not want any factors other than the report submission and cloaking
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strategy to in�uence the blacklisting of my phishing websites. As part of this, I wanted to

secure a large set of IP addresses, such that no anti-phishing entity would see two of my

websites hosted on the same IP address. With the resources available for this research,

I was able to provision 40 web servers powered by Digital Ocean, a large cloud hosting

provider [28] (I informed Digital Ocean about this research to ensure the servers would

not be taken down for abuse [89]). Each server had a unique IP address hosted in one

of the host’s data centers in Los Angeles, New York, Toronto, Frankfurt, Amsterdam, or

Singapore. �e batch size was thus 40 phishing websites per preliminary test, for a total

of 400 websites across the ten entities being tested. Within each batch, six websites used

�lter types A and F, while seven used �lter types B through E.

I also wanted to mimic actual phishing a�acks as closely as possible. I studied the clas-

si�cation of phishing URL types submi�ed to the Anti-phishing Working Group’s eCrime

Exchange in early 2017 and cra�ed the URLs for each of the 40 phishing websites while

following this distribution as closely as possible [41, 102]. I registered only .com domains

for the URLs, as the .com TLD accounts for the majority of real-world phishing a�acks. In

addition, I chose GoDaddy as the registrar, which is among the most-abused registrars by

real phishers [4]. Furthermore, to prevent crawlers from landing on my phishing websites

by chance (i.e., by requesting the bare hostname), paths were non-empty across all of the

URLs.

Using URLs that appear deceptive is a double-edged sword: while it allows us to gain

insight into how various URL types are treated by entities, it is also a factor that may skew

blacklisting speed. However, I decided to proceed with this in mind as the purpose of the

preliminary tests was to observe more than measure, given the use of a relatively small

sample size per batch. Table 4.4 shows the distribution of URL types and �lters per batch

of websites.
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I registered the required domain names and �nalized the con�guration of my infras-

tructure in May 2017. In July, I started the experiments by systematically deploying and

reporting my phishing websites. For each day over the course of a ten-day period, I picked

one untested entity at random (from those in Table 4.2), fully reported a single batch of

URLs (over several minutes), and started monitoring blacklist status across each targeted

web browser. �e monitoring of each URL continued every ten minutes for a total of 72

hours a�er deployment. Over this period and for several days a�erward, I also logged web

tra�c information to each of my phishing websites in an e�ort to study crawler activity

related to each entity. Prior empirical tests found blacklists to show their weakness in the

early hours of a phishing a�ack [114]. My 72-hour observation window allows us to study

blacklist e�ectiveness during this critical period while also observing slower entities and

potentially uncovering new trends.

4.3.3 Responsible Disclosure

My analysis of the preliminary tests yielded several security recommendations (dis-

cussed in Section 4.6). I immediately proceeded to disclose my �ndings to the directly

impacted entities (i.e., browser vendors, the brand itself, and major blacklist operators)

which I also intended to re-test. I held my �rst disclosure meeting with PayPal in Au-

gust 2017. Following PayPal’s legal approval, I also disclosed to Google, Microso�, Apple,

Mozilla, and the APWG in February 2018. Each meeting consisted of a detailed review

of the entity’s performance in my study, positive �ndings, speci�c actionable �ndings,

and high-level comparisons to other entities. �e disclosures were generally positively re-

ceived and resulted in close follow-up collaboration with Google, Mozilla, and the APWG;

this ultimately resulted in the implementation of e�ective blacklisting within mobile GSB

browsers and general mitigations against certain types of cloaking. I clearly stated that I

would repeat the experiments in 4-6 months and therea�er publish the �ndings.
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Phishing URL Content

Sample URL
(Type [41, 102]) Qty. Filters Used

Full Tests

Non-deceptive (random) (V)

h�p://www.�orence-central.com/logician/retch/
396

A (66), B (66), C (66),

D (66), E (66), F (66)

Preliminary Tests

Non-deceptive (random) (V)

h�p://receptorpeachtreesharp.com/cultivable/
10

A (1), B (2), C (2),

D (2), E (2), F (1)

Brand in Domain (IVa)

h�p://www.h�ps-o�cial-verifpaypal.com/signin
6

Deceptive Domain (IVb)

h�p://services-signin.com/login/services/account/
6

Brand in Subdomain (IIIa)

h�p://paypal1.com.835anastasiatriable.com/signin
6

Deceptive Subdomain (IIIb)

h�p://services.account.secure.lopezben.com/signin
6

Deceptive Path (II)

h�p://simpsonclassman.com/paypa1.com/signin
6

A (1), B (1), C (1),

D (1), E (1), F (1)

Table 4.4: URL and �lter distribution for each experiment.

I did not immediately disclose to the blacklists powering Opera as I had not origi-

nally expected to have the resources to re-test a ��h entity. Additionally, given lesser

short-term urgency with respect to the remaining entities (and in the absence of close

relationships with them), at the time I felt it would be more impactful to disclose to them

the preliminary �ndings alongside the full test �ndings. �is approach ultimately allowed

us to be�er guide my recommendations by sharing deeper insight into the vulnerabilities

within the broader ecosystem. A�er the completion of the full tests, I reached out the

all remaining entities via e-mail; all but PhishTank and Opera responded and acknowl-
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edged receipt of a textual report containing my �ndings. US CERT and ESET additionally

followed up for clari�cations once therea�er.

4.3.4 Full-scale Tests

I believed that key ecosystem changes resulting from my disclosures would still be

captured by the original experimental design. �us, I did not alter the retesting approach

beyond increasing the scale to enable a more representative sample size. In addition,

rather than using the URL distribution from the preliminary experiments, I solely used

non-deceptive paths and hostnames (i.e., with randomly-chosen English words) in order to

remove URL classi�cation as a possible confounding factor in my evaluation of cloaking.

I registered the required domains in May 2018 and initiated sequential deployment

of the full-scale tests in early July. I re-tested all entities to which I disclosed. As my

budget ultimately allowed for an additional entity, I decided to also include PhishTank for

its promising performance in the preliminary test. Each of the resulting �ve experiment

batches consisted of 396 phishing websites, evenly split into six groups for each cloaking

technique. My reporting method did not change, though I thro�led e-mailing such that the

reports were spread over a one-hour period. Reporting through Google and Microso�’s

web interfaces spanned a slightly longer period of up to two hours due to the unavoidable

manual work involved in solving required CAPTCHA challenges.

4.3.5 Sample Size Selection

For the full tests, I chose a sample size of 384 phishing websites for each entity. My

goal was to obtain a power of 0.95 at the signi�cance level of 0.05 in a one-way inde-

pendent ANOVA test, which, for each entity, could identify the presence of a statistically

signi�cant di�erence in mean blacklisting speed between the six cloaking �lters. Based on

Cohen’s recommendation [20] and my preliminary test results, I assumed a medium e�ect
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Figure 4.2: PhishFarm framework architecture.

size (f ) of 0.25. I added 12 websites (2 per �lter) to each experiment to serve as backups

in case of unforeseen technical di�culties. All websites ultimately delivered 100% uptime

during deployment, thus I ended up with an e�ective sample size of 396 per experiment.

While the assumption of f=0.25 introduced some risk into the experimental design, I ac-

cepted it given the high cost of registering a new .com domain for each website.

4.4 PhishFarm Testbed Framework

To be able to execute my experimental design at scale, I designed PhishFarm: a compre-

hensive framework for deploying phishing websites, reporting them to anti-abuse entities,

and measuring blacklist response. �e framework operates as a web service and satis-

�es three important requirements: automation, scalability, and reliability. I eliminated as

many manual actions as technically feasible to ensure that the di�erence between launch-

ing hundreds and thousands of websites was only a ma�er of minutes. Actual website
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deployment can thus happen instantly and on-demand. Apart from up-front bulk domain

registration (4.4.1) and reporting phishing through a web form, all framework components

feature end-to-end automation.

�e framework consists of �ve interconnected components as shown in Figure 4.2:

bulk domain registration and DNS setup, stateless cloud web servers to display the phish-

ing websites, an API and database that manages con�guration, a client that issues com-

mands through the API, and a monitoring system that regularly checks in which browsers

each phishing is blacklisted. In total, I wrote over 11,000 lines of PHP, Java, and Python

code for these backend components. I extensively tested each component—in particular,

the hosting and monitoring infrastructure—to verify its correct operation.

4.4.1 Domain and DNS Con�guration

A core component of any phishing website is its URL, which consists of a hostname

and path [41]. �e framework includes a script to automatically generate hostnames and

paths per the experimental design ( A ). I then manually register the required domain

names in bulk and point them to my cloud hosting provider’s nameservers. Finally, I

automatically create DNS records such that the domains for each experiment are evenly

spread across the IP addresses under my control. I set up wildcard CNAME records [70]

such that I could programmatically con�gure the subdomain of each phishing website

on the server-side. In total, registration of the 400 preliminary domains took about 15

minutes, while registration of the 1,980 domains for the full tests took 30 minutes; apart

from the domain registration itself, no manual intervention is needed.

4.4.2 Research Client

I implemented a cross-platform client application ( B ) to control the server-side com-

ponents of the framework and execute my research. �is client enables bulk con�gu-

63



ration of phishing websites and cloaking techniques, bulk deployment of experiments,

automated e-mail reporting, semi-automated web reporting, monitoring of status, and

data analysis.

4.4.3 Server-side Components

�e server-side components in my framework display the actual phishing websites

based on dynamic con�guration. �ey are also responsible for logging request data for

later analysis and monitoring blacklist status.

Central Database and API

At the heart of the framework is a central API ( C1 ) that serves as an interface to a database

with the phishing website con�guration and system state. For each website, the database

maintains a�ributes such as date activated, reported, and disabled; blacklisting status;

website and e-mail HTML templates; server-side and JavaScript request �ltering code;

and access logs. I interact with this API via the client whenever I need to de�ne new

websites or deploy websites as part of an experiment. All tra�c to and from the API is

encrypted.

Hosting Infrastructure

My hosting infrastructure ( C2 ) consists of Ubuntu cloud servers which run custom in-

termediate so�ware on top of Apache. �e intermediate so�ware captures all requests

and enables dynamic cloaking con�guration and enhanced tra�c logging. Each server

obtains all of its con�guration from the API, which means that the number of servers

can �exibly be chosen based on testing requirements (40 in this case). When an HTTP

request is received by any server, the server checks the request URL against the list of live

phishing websites from the API, processes any cloaking rules, responds with the intended
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content, and logs the request. To quickly handle incoming requests, the system state is

cached locally on each server to minimize API queries.

I served all my phishing websites over HTTP rather than HTTPS, as this was typi-

cal among real-world phishing websites at the time I designed the preliminary tests [4].

Although the PhishFarm framework supports HTTPS, I did not wish to alter the exper-

imental design between tests. Both approaches generate potential artifacts that might

bene�t the anti-phishing ecosystem: unencrypted websites allow network-level packet

sni�ng, while encrypted websites leave an evidence trail at the time a certi�cate is is-

sued [31]. I mitigated the former risk to a large extent through a stealthy design of the

monitoring system, as discussed in more detail in the following section.

My framework supports arbitrary, brand-agnostic web page content to be displayed

for each phishing website. For my experiments, I hosted all resources (e.g., images and

CSS) locally on each server to avoid confounding detection through external web requests

to these �les. In the wild, I have observed that sophisticated phishing kits follow a similar

strategy to reduce detectability, though today’s typical kits merely embed resources from

the legitimate website.

Monitoring Infrastructure

�e purpose of the monitoring system ( C3 ) is to identify, at a �ne granularity, how much

time elapses before a reported phishing website is blacklisted (if at all). To obtain a clear

picture of the early hours of blacklists’ response, I con�gured the monitoring system to

access each live phishing URL at least once every ten minutes in each target desktop

browser (the shortest feasible interval with the available hardware). I checked the blacklist

status of each URL by analyzing a screenshot of the respective browser window; this is

similar to the approach taken by Sheng et al [114]. I chose this approach for its universal

applicability and lack of dependencies on browser automation libraries, which commonly
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force-disable phishing protection [2]. For my purposes, it su�ced to check if the dominant

color in each image [112] was close to red (red is used in the phishing warning messages

of all the browsers I considered). Although this image-based approach proved reliable and

can be fully automated, it does not scale well because each browser requires exclusive use

of a single system’s screen.

To satisfy the scalability requirement, the monitoring system follows a distributed ar-

chitecture with multiple autonomous nodes that communicate with the API; each node is

a virtual machine (VM) that runs on a smaller set of host systems. So�ware on each VM

points a browser to the desired URL via command line and sends virtual keystrokes, as

needed, to close stale tabs and allow for quick page loads. During the experiments, I used

three types of nodes: Mac OS X 10.12 VMs with Chrome, Safari, Opera, and Firefox; Win-

dows 10 VMs with Edge and Internet Explorer (IE) 11; and Windows 8.1 VMs with IE 11.

In total, the full experiments required 31 desktop nodes across four host machines (col-

lectively with 18 Intel Core i7 CPU cores and 96 Gb of RAM) to deliver the required level

of monitoring performance and redundancy. Each node informs the API of the browsers

it supports; it then awaits a command consisting of a set of URLs for a target browser, and

in real-time, reports the monitoring results back to the API. I freshly installed the latest

stable version of each browser at the time of each test and kept default security se�ings

(or, in the case of IE and Edge, recommended se�ings when prompted).

I was unable to obtain such a large number of mobile devices, and o�cial emulators

at the time would force-disable blacklist warnings. �us, I only tested mobile browsers

hourly and relied on my observation that their behavior was tied to the behavior of their

desktop counterparts. I used a physical Samsung Galaxy S8 and Google Pixel phone to

test mobile Chrome, Firefox, and Opera; and an iPhone 7 (preliminary) or 8 (full) to test

mobile Safari. A future version of the framework could be improved to leverage Android
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VMs, in lieu of physical or emulated devices, to perform monitoring similar to that of

desktop browsers.

Lastly, I wanted to ensure that the large number of requests from the monitoring sys-

tem did not a�ect the blacklist status of my phishing websites (i.e., by triggering heuristics

or network-level analysis [114]). �erefore, rather than displaying the phishing content

in the monitoring system’s browsers, I simply displayed a blank page with an HTTP 200

(OK) status code [40]. Although I had the option of querying the GSB API [48] directly as a

supplement to empirically monitoring the browsers it protects, I chose not to do so for the

same reason. Finally, the monitors were connected to the Internet using an anonymous

VPN service in an e�ort to bypass any potential institution- and ISP-level sni�ng.

4.4.4 Ethical and Security Concerns

�roughout my experiments, I was careful in ensuring that no actual users would visit

(let alone submit credentials to) my phishing websites: I only ever shared the website URLs

directly with anti-phishing entities, and I sterilized the login forms such that passwords

would not be transmi�ed in the event of form submission. In the hands of malicious

actors with access to the necessary hosting and message distribution infrastructure, and

with malicious modi�cations, my framework could potentially be used to carry out real

and evasive phishing a�acks on a large scale. I will thus not release the framework as

open-source so�ware; however, it will be made available to ve�ed security researchers.

Another potential concern is that testing such as that done by PhishFarm could de-

grade the response time of live anti-phishing systems or negatively impact the data sam-

ples used by their classi�ers. Given the volume of live phishing a�acks today [5], I do not

believe that my experiments carried any adverse side e�ects, and the entities to which

I disclosed did not raise any concerns regarding this. With respect to classi�ers based

on machine learning, an e�ective methodology has already been proposed to ensure that
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high-frequency phishing websites do not skew training samples [136]. Nevertheless, it

would be prudent for any party engaged in long-term or high-volume testing of this na-

ture to �rst consult with any targeted entities.

4.5 Experimental Results

PhishFarm proved to deliver reliable performance over the course of my tests and ex-

ecuted the experimental methodology as designed. Following the completion of all tests,

I had collected timestamps of when blacklisting occurred, relative to the time I reported

the website, for each of my phishing websites in each of the desktop and mobile browsers

tested. �is totaled over 20,000 data points across the preliminary and full tests, and had

added dimensionality due to the various entities and cloaking techniques tested. Table 4.5

shows the breakdown of crawler and blacklisting activity on my phishing websites. Over-

all, I found that websites with cloaking were both slower and less likely to be blacklisted

than websites without cloaking: in the full tests, just 23.0% of the websites with cloak-

ing (which were crawled) ended up being blacklisted in at least one browser—far fewer

than the 49.4% websites without cloaking which were blacklisted. Cloaking also slowed

the average time to blacklisting from 126 minutes (for websites without cloaking) to 238

minutes.

However, closer scrutiny is required to make insightful conclusions about the con-

ditions under which cloaking is e�ective, as I found that each anti-phishing entity ex-

hibited distinctive blacklisting of di�erent cloaking techniques alongside varying overall

speed. For example, the mobile-only Filter B showed 100% e�ectiveness against blacklist-

ing across all entities. On the other hand, the JavaScript-based Filter F was 100% e�ective

for some entities, delayed blacklisting for others, but was, in fact, more likely to be black-

listed than Filter A by others still. In many cases, there was also a lack of blacklisting of

Filter A websites (i.e., those without cloaking). Entities—in particular, the clearinghouses—

68



Phishing Websites

Deployed

Crawler(s) Attempted

Retrieval

Successful Crawler

Retrievals

Crawled Websites

Blacklisted

Mean Time Before

1st Blacklisting

Mean Page Loads

per Website

w/ Cloaking w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o

Prelim. 340 60
294

(86.5%)

51

(85.0%)

156

(53.1%)

49

(96.1%)

124

(42.2%)

42

(82.4%)

173

min.

79

min
80 464

Full 1650 330
1333

(80.8%)

271

(82.7%)

818

(61.4%)

264

(97.4%)

306

(23.0%)

134

(49.4%)

238

min.

126

min.
162 334

Table 4.5: Overview of crawler and blacklisting activity across all experiments.

at times failed to ultimately blacklist a reported website despite the extensive crawling

activity. Although it is possible that the direct reporting methodology led to some web-

sites being ignored altogether, the exceptional performance of GSB with respect to Filter A

shows that a very high standard is realistic. I detail each entity’s behavior in Section 4.5.6.

To provide meaningful measurements of entity performance with respect to di�er-

ent browsers and cloaking �lters, I propose a scoring system in Section 4.5.2 which seeks

to capture both the response time and the number of websites blacklisted by each anti-

phishing entity for each browser and/or �lter. In addition, I summarize my �ndings visu-

ally in Figures 4.3 and 4.4 by plo�ing the cumulative percentage of websites blacklisted

over time, segmented by each browser or by each cloaking technique, respectively. Lastly,

I analyze web tra�c logs to make observations about the distinctive behavior of each anti-

phishing entity. Although much of my analysis focuses on the results of the large-scale

full tests, I also make comparisons to the preliminary test data when appropriate.

4.5.1 Crawler Behavior

Of all websites that I launched during the preliminary and full tests, most (81.9%) saw

requests from a web crawler, and a majority of websites therein (66.0%) were successfully

retrieved at least once (i.e., bypassing cloaking if in use). In a handful of cases, my reports

were ignored by the entities and thus resulted in no crawling activity, possibly due to
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volume or similarity to previous reports; I mitigated this risk through the large sample

size and discuss it in more detail in Section 4.7. �e distribution of crawler hits was skewed

le�, characterized by a small number of early requests from the entity to which I reported,

followed by a large stream of tra�c from it as well as other entities. Importantly, di�erent

cloaking techniques showed no signi�cant e�ect on the time of the �rst crawling a�empt;

the median response time ranged from 50 to 53 minutes, from the time of reporting, for

all �lter types.

During the full experiments, only websites that were crawled were ultimately black-

listed. Generally, the crawling also had to result in successful retrieval of the phishing

content for blacklisting to occur, though in 10 cases (all in the GSB experiment with Filter

D), a website would be blacklisted despite a failed retrieval a�empt; possible factors for

this positive phishing classi�cation are described in prior work [136].

4.5.2 Entity Scoring

For each entity tested, let U be the set of phishing URLs reported to the entity, let B

be the set of browsers monitored, let T be the set of observed blacklisting times, let F be

the set of cloaking �lters used, and let MS denote the worldwide browser market share.

Additionally, I de�ne the value of the function accessible(b, f) to be true if and only if a

phishing website with �lter f is designed to be accessible in browser b.

For each URL-browser combination in B
Ś

U , per Formula 4.1, I de�ne a normalized

performance score SURLb
on the range r0, 1s, where 0 represents no blacklisting and 1

represents immediate blacklisting relative to the time reported. �e score decays linearly

over the 72-hour observation window (e.g., a website blacklisted a�er 36 hours would have

SURLb
“ 0.5). I take the average of all these URL-browser scores for each browser-�lter

combination, as Sbf , per Formula 4.2.
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MSB
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Table 4.6: Formulas for aggregate entity scores (per test).

I further aggregate the Sbf scores to meaningfully summarize the protection of each

browser by each entity: the browser score Sb, as per Formula 4.3, is the average of all Sbf

for a given browser b, but limited to �lters f accessible in b. To gauge the blacklisting of

each cloaking �lter, I report PBf as the raw proportion of websites blacklisted in at least

one browser for each respective �lter. Note that PBf will always be greater than or equal

to any Sbf because the former is not reduced by slow speed; I thus additionally report

TBf , the average time to blacklisting for each �lter f (in minutes).

To capture the overall real-world performance of each entity, I average all Sb, weighted

by the market share of each browser, to produce S, as per Formula 4.4. �e scores S allow

us to directly and e�ciently compare the performance between entities, and would be

useful in modeling long-term trends in future deployments of PhishFarm. I also calculate

the proportion of all websites crawled, C , to illustrate the entity’s response e�ort.

I present the aforementioned aggregate scores in Table 4.7 for all entities in the full

tests. Indeed, the abundance of 0 (and near-0) scores was disappointing and representative

of multiple ecosystem weaknesses which I discuss in the following sections. Scores for the

preliminary tests are found in Table A.1 in Section A. Note that because Chrome, Firefox,
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and Safari showed nearly identical scores across all experiments, I simplify the table to

report the highest respective score under the GSB heading. I make a similar simpli�cation

for IE 11 on Windows 10 and 8.1.

I do not separately report the performance of mobile browsers because I observed the

behavior of mobile browsers to be directly related to their desktop counterparts. Dur-

ing the preliminary tests, mobile Firefox and Opera mirrored the blacklisting—and thus

also the scores—of their desktop versions. Mobile Chrome and Mobile Safari showed no

blacklist warnings whatsoever for any of my phishing websites and thus receive Sb scores

of 0. During the full tests, the behavior of mobile Chrome, Safari, and Opera remained

unchanged. Firefox stopped showing blacklist warnings, and its scores thus dropped to

0 (the 0 scores of mobile browsers represented a serious issue; this was corrected a�er I

contacted Google and Mozilla a�er the full tests, as discussed in Section 4.6.1). I did not

test mobile versions of Microso� browsers because mobile IE is no longer supported; Edge

for Android and iOS was released a�er I began testing.
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Table 4.7: Aggregate entity blacklisting performance scores in the full tests (colors denote

subjective assessment: green— good, yellow— lacking, red— negligible blacklisting).

GSB Filter A Filter B Filter C Filter D Filter E Filter F Sb

GSB 0.942 0 0.030 0.899 0.104 0.692 0.533

IE 0 0 0 0 0 0 0

Edge 0 0 0 0 0 0 0
Sbf

Opera 0 0 0 0 0 0 0

PBf 0.970 0 0.031 0.953 0.106 0.712 0.457 S

TBf (min.) 112 N/A 50 100 81 107 0.947 C

SmartScreen Filter A Filter B Filter C Filter D Filter E Filter F Sb

GSB 0.005 0 0.005 0 0 0.009 0.004

IE 0.176 0 0.003 0 0.301 0.411 0.296

Edge 0.183 0 0.003 0 0.329 0.421 0.311
Sbf

Opera 0 0 0.005 0 0 0 0

PBf 0.212 0 0.016 0 0.364 0.455 0.038 S

TBf 548 N/A 2889 N/A 391 298 0.649 C

APWG Filter A Filter B Filter C Filter D Filter E Filter F Sb

GSB 0.563 0 0.356 0 0.777 0 0.339

IE 0.113 0 0 0 0.626 0 0.246

Edge 0.129 0 0 0 0.761 0 0.297
Sbf

Opera 0.242 0 0.185 0 0.545 0 0.262

PBf 0.576 0 0.344 0 0.803 0 0.328 S

TBf 194 N/A 243 N/A 125 N/A 1 C

PhishTank Filter A Filter B Filter C Filter D Filter E Filter F Sb

GSB 0.077 0 0 0 0 0.026 0.024

IE 0.096 0 0 0 0 0 0.026

Edge 0.085 0 0 0 0 0 0.028
Sbf

Opera 0.074 0 0 0 0 0.024 0.032

PBf 0.106 0 0 0 0 0.136 0.025 S

TBf 386 N/A N/A N/A N/A 2827 0.467 C

PayPal Filter A Filter B Filter C Filter D Filter E Filter F Sb

GSB 0.133 0 0.149 0.052 0.198 0.167 0.104

IE 0.102 0 0.040 0 0.074 0.137 0.140

Edge 0.123 0 0.056 0.046 0.193 0.163 0.160
Sbf

Opera 0.119 0 0.029 0 0.191 0.120 0.143

PBf 0.167 0 0.172 0.078 0.288 0.182 0.138 S

TBf 675 N/A 440 1331 1077 338 0.995 C
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4.5.3 Preliminary vs. Full Tests

I observed many core similarities when comparing the performance of the same en-

tity between the preliminary and full tests. I also saw improvements related to the recom-

mendations I shared during the disclosure meetings, in particular concerning the APWG’s

treatment of Filters C and E. Notably, during the full tests, crawler tra�c to websites with

cloaking increased by 44.7% relative to websites without cloaking, while the overall tra�c

volume also increased by 89.7%. I discuss all the entity-speci�c improvements in Sec-

tion 4.5.6.

�e comparison also revealed some surprises, however. �e main experimental di�er-

ence between the two sets of tests, apart from the sample size, was my exclusive use of

random URLs in the full tests. On the other hand, the preliminary tests included a sam-

pling of deceptive URLs. In the preliminary tests, I observed that Edge and IE were quick

to display blacklist warnings for websites with certain deceptive URLs. In fact, many Type

IV URLs (with domain names containing either the PayPal brand or deceptive keywords)

saw proactive zero-hour warnings in these browsers without any prior crawler activity.

Figure A.1b in Section A shows the e�ect of URL type on blacklisting in the preliminary

tests. During the full tests, no phishing website was blacklisted unless it had previously

been visited by a crawler. In the absence of deceptive URLs, I thus observed all the black-

lists to be purely reactive; this, in turn, led to lower Sb scores of Edge, IE, and websites

with Filter B, and a lower overall score S for SmartScreen.

Raw data from the preliminary tests can be found in Appendix A.

4.5.4 Browser Performance

Figure 4.3 shows the percentage of my phishing websites blacklisted over the course

of all the full experiments, grouped by browser, but limited to websites intended to be
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Figure 4.3: Blacklisting over time in each browser (full tests).

accessible in each respective desktop browser (i.e., Filter B was excluded for all and Filters

C and D were excluded for IE, Edge, and Opera).

Chrome, Safari, and Firefox consistently exhibited the highest overall blacklisting

speed and coverage, but were still far from blacklisting all cloaked websites. Opera gener-

ally outperformed the Microso� browsers during the �rst four hours but was later over-

taken for the remainder of the experimental period. In the absence of deceptive phishing

URLs, Edge and IE simply lost their edge in the full tests; Figure A.1c in Section A shows

their superior performance in the preliminary tests.

Consistency Between Browsers

Chrome, Firefox, and Safari are all protected by the GSB blacklist; my tests con�rmed these

browsers do consistently display blacklist warnings for the same set of websites. However,

during the full tests, Chrome displayed warnings up to 30 minutes earlier than Safari, and

up to one hour earlier than Firefox; the warnings became consistent a�er the �ve-hour

mark. Upon further investigation, I believe that this disparity was caused by di�erent

caching implementations of the GSB Update API (v4) in each browser (this API ensures
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Figure 4.4: E�ect of cloaking on blacklisting over time (full tests).

privacy and quick lookups but requires periodic refreshes of the entire blacklist [48]).

Slow response speed has been a notable shortcoming of blacklists, and it appears that

browser blacklist caching can still be improved from a security perspective1.

Edge and IE 11 (both protected by SmartScreen) proved far less consistent. In the full

tests, Edge displayed warnings up to two hours earlier and covered more websites than

IE until the 24-hour mark. However, in the preliminary tests—which involved deceptive

URLs detectable by heuristics—IE would o�en display preemptive warnings for websites

that would not be blocked in Edge for several hours, if at all. �ese deviations were evident

in the preliminary APWG, SmartScreen, and PayPal tests as per Table A.1 in Section A.

4.5.5 Filter Performance

Figure 4.4 shows the percentage of my phishing websites blacklisted over the course

of all the full experiments, grouped by cloaking �lter type. Because this summary view

masks some of the distinctive per-entity behavior I observed in Table 4.7, the entity-
1Delays caused by blacklist caching were subsequently addressed in Google Chrome in December 2019

through the addition of real-time URL lookups. I elaborate on this change in Section 5.10.
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speci�c �gures throughout Section 4.5.6 should be consulted as a supplement. Note that

because these �gures consider all browser-�lter combinations, their Y-axes di�er from

Figure 4.3 and the Sbf scores in Table 4.7. Nevertheless, they all convey the �nding that

there exist considerable gaps in today’s blacklists.

�e overall earliest blacklisting I observed occurred a�er approximately 40 minutes,

in Chrome. Signi�cant growth took place between 1.5 and 6.5 hours and continued at a

slower rate therea�er for the full 72-hour period. Compared to websites without cloaking,

my cloaking techniques showed moderate to high e�ectiveness throughout the life of each

phishing website. Filter B saw no blacklisting whatsoever across any desktop or mobile

browser I tested. Filters E and F proved most e�ective in the early hours of deployment,

while the geo-speci�c Filters C and D saw the lowest amount of blacklisting in the long

term. Between 48 and 72 hours a�er deployment, websites with Filter E overtook Filter A

websites by a small margin; upon further analysis, I found that this was due to a high level

of interest in such websites following reporting to the APWG. All other types of websites

with cloaking were on average less likely to be blacklisted than websites without.

4.5.6 Entity Performance

Although no single entity was able to overcome all of the cloaking techniques on its

own, collectively the entities would be successful in doing so, with the exception of Filter

B (this has since been corrected as per the discussion in Section 4.6.1).

Google Safe Browsing

Due to the high market share of the browsers it protects, GSB is the most impactful anti-

phishing blacklist today. It commanded the highest score S in both the preliminary and

full tests. GSB’s key strength lies in its speed and coverage: I observed that a crawler

would normally visit one of my websites just seconds a�er I reported it. 94.7% of all the
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Figure 4.5: Blacklisting over time (GSB full test).

websites I reported in the full tests were in fact crawled, and 97% of websites without

cloaking (Filter A) ended up being blacklisted. Blacklisting of Filter D was comparable,

and Filter F improved over the preliminary tests.

However, GSB struggled with Filter E, which blocked hostnames speci�c to Google

crawlers. It also struggled with Filter C, which denied non-US tra�c. �e reason the re-

spective PBf scores are low is that if the initial crawler hit on the phishing website failed,

GSB would abandon further crawling a�empts; the initial hit almost always originated

from a predictable non-US IP address. Another weakness appears to be data sharing, as

none of the websites I reported to GSB ended up being blacklisted in Edge, IE, or Opera.

Microso� SmartScreen

SmartScreen proved to be the only native anti-phishing blacklist to leverage proactive URL

heuristics to blacklist phishing websites, which allowed Microso� browsers to achieve

high scores during the preliminary tests. �ese heuristics were mainly triggered by URLs

with a deceptive domain name. In the preliminary tests, Edge proved to be exceptionally

well-protected, achieving a top Sb score of 0.87—the highest of any browser.
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Figure 4.6: Blacklisting over time (SmartScreen full test).

In the full tests, the performance of IE improved over the preliminary tests and became

more consistent with that of Edge. Surprisingly, SmartScreen was more likely to blacklist

websites with cloaking than those without, possibly due to the use of cloaking detection

or classi�cation techniques (which would be commendable) alongside low trust of my

phishing reports (see the limitations in Section 4.7).

Reporting to SmartScreen did not seem to signi�cantly a�ect any non-Microso� browsers;

the entity thus shares a similar shortcoming with GSB. SmartScreen was also among the

slowest entities to reactively respond to phishing reports, and its overall coverage was

poor, which is its key weaknesses.

APWG

�e APWG was the second-highest scoring entity in the full tests and showed consistent

protection of all browsers. Its score S increased substantially compared to the preliminary

tests due to improvements to bypass Filters C and E, which allowed APWG reports to

result in blacklisting of such websites in GSB browsers—something not achieved when I
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Figure 4.7: Blacklisting over time (APWG full test).

reported directly to GSB. �e APWG also generated the highest level of crawler tra�c of

any entity I tested.

Unfortunately, the APWG failed to blacklist any websites with Filter D or F in the

full tests; its preliminary success proved to have been related solely to the detection of

deceptive URLs by IE and Edge. Interestingly, I saw a large increase in the blacklisting of

websites with Filter E a�er the 24-hour mark; a�er analyzing the tra�c logs I believe that

this is due to data sharing with PayPal (this trend is also re�ected in Figure 4.9).

PhishTank

PhishTank is a community-driven clearinghouse that allows human volunteers to identify

phishing content [29]; it also leverages a network of crawlers and partners to aid in this

e�ort. It was the second-highest performer in the preliminary tests thanks to its expedi-

tious blacklisting in GSB browsers. In the full tests, I was surprised to see that only 46.7%

of websites reported were crawled, and very few websites were ultimately blacklisted.

Despite this, PhishTank generated the second-highest volume of total crawler tra�c. I do
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Figure 4.8: Blacklisting over time (PhishTank full test).

not know the reasons for its shortcomings and PhishTank did not reply to my disclosure;

I suspect that the manual nature of classi�cation by PhishTank may be a limiting factor.

Figure 4.9: Blacklisting over time (PayPal full test).

PayPal

During the preliminary tests, PayPal’s own abuse reporting service struggled to bypass

Filters D and F, but overcame the la�er in the full experiments while maintaining a mod-
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erate degree of blacklisting. Its protection of Opera also improved between the two tests.

Despite crawling all but two of the websites I reported in the full tests, the average re-

sponse time and browser protection ended up being poor overall. I cannot disclose the

reasons for this but expect to see a future improvement as a result of these �ndings.

Remaining Entities

Performance scores for entities only included in the preliminary tests are found in Ta-

ble A.1 within Section A. High-level descriptions of each follow.

All websites I reported to ESET ended up being crawled, but only a fraction of those—

all with Filter A—were actually blacklisted. Overall, speed was slow, though the black-

listing did span multiple browsers. Netcra� yielded the best protection of Opera in the

preliminary tests, but overall it struggled with most of the cloaking techniques and did

not deliver timely blacklisting. In retrospect, given the unexpectedly poor performance

of PhishTank in the full tests, I would have been interested in re-testing Netcra�. Reports

to US CERT led to minimal crawler activity and blacklisting; disregarding heuristics from

the Microso� browsers, only a single website was blacklisted. Phishing reports I sent to

McAfee e�ectively bypassed Filter A and Filter E but only appeared to lead to timely black-

listing in Microso� Edge. Reports to WebSense had no e�ect beyond crawler tra�c related

to the URL heuristics used by Microso�; while I was hopeful the e-mail reporting channel

I used would prove fruitful, this is understandable given that the company focuses on the

protection of its enterprise customers.

4.5.7 Abuse Reports

During the preliminary testing period, my web host (Digital Ocean) received a total of

only 30 abuse reports, or roughly one for every 5.5 phishing websites blacklisted. �e total

number of reports increased to 266 during the full tests: also a substantial relative increase
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of one report per 1.7 blacklisted websites. Because I had advised the host of this research

prior to deployment, the infrastructure remained online. Normally, per hosting terms

of service, unresolved abuse should result in take-down (a notable exception includes

“bulletproof” service providers which indirectly sponsor cybercrime [118]).

Each abuse report speci�ed the o�ending URL, the nature of the abusive content (i.e.,

phishing), the reporting entity, the date, and the IP address of the associated web server.

Due to unexpected changes to the web host’s data retention policy, data for all but the �nal

full experiment (i.e., PayPal) was limited to the la�er two parameters. �is limitation

precludes a conclusive evaluation of the e�ect of cloaking on abuse reports, though I

believe the increase in the raw number of reports between the preliminary tests and full

tests is potentially indicative of improvements within the ecosystem.

During the full PayPal test, 52 phishing websites hosted on 30 (out of the 40) server

IP addresses ended up being blacklisted. �e hosting provider sent 73 abuse reports cor-

responding to 28 of those IPs and one IP which was not hosting any blacklisted websites.

�e abuse reports originated from MarkMonitor (43), Netcra� (14), UK NCSC (13), and

IsItPhishing.org (3) and favored IP addresses within the EU. Of the 73 websites with abuse

reports, 18 used Filter A, 16 used Filter C, �ve used Filter D, 26 used Filter E, and eight used

Filter F ; none used Filter B. �e reports arrived at a median of 17 hours a�er each website

was reported, distributed as shown in Figure 4.10. During the preliminary PayPal test,

there were only six abuse reports for six IP addresses.

�e relatively long delay observed before the arrival of abuse reports underscores the

importance of timely blacklisting as the �rst line of defense against phishing a�acks.

Take-down of these websites would not be possible until some time a�er the abuse re-

port (i.e., to give the website owner a reasonable opportunity to take action), and in some

cases (e.g., the re-compromise of a legitimate server) it may even prove less e�ective than

blacklisting.
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Figure 4.10: Timing of abuse reports for the full PayPal test.

4.5.8 Crawler Tra�c Analysis

My 2,380 phishing websites logged a total of 2,048,606 HTTP requests originating from

100,959 distinct IP addresses. A substantial proportion of requests was characterized by

crawlers scanning for phishing kit archives (i.e., zip �les) or credential dump �les; such

requests resulted in 404 “not found” errors. It is bene�cial for the security community to

be able to identify compromised user information and study phishing kits [56, 102], but

such crawling is noisy. By monitoring tra�c to their phishing websites, cybercriminals

could become aware of the ecosystem’s knowledge of their tools, and adapt accordingly.

Figure 4.11 aggregates the web tra�c to all PhishFarm phishing websites from the full

tests over a two-week period relative to initial deployment (along a logarithmic scale).

Not unexpectedly, I observed the largest amount of tra�c in the hours immediately a�er

reporting each phishing website. Smaller spikes occurred several hours or days therea�er

as additional infrastructure started accessing the websites. I automatically disabled each

website at the end of its 72-hour deployment; crawlers would thus start seeing 404 errors

therea�er. I observed a spike in tra�c at this point with characteristics similar to the

initial crawler tra�c, followed by an immediate sharp decline (presumably once the o�ine

state of each website was veri�ed). Over the following seven days, I saw a consistent yet

slowly-declining level of tra�c. It is clear that an e�ort is being made to ensure that

o�ine phishing content does not make a return. A�er about ten days, I noted a second

sharp decline, a�er which the tra�c reached insigni�cant levels. I did not study the long-
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Figure 4.11: Tra�c to my phishing websites over time (full tests, logarithmic scale).

term persistence of blacklist warnings within this dataset, but this is something that I do

evaluate in Section 5.8.2 in the following chapter.

Geographical Origin

Using the GeoLite2 IP database [79], I found that tra�c to my phishing websites originated

from 113 di�erent countries across the majority of North America, Europe, and Asia, and

some of Africa, as shown in Table 4.8. 79.02% of all unique IP addresses were based in

the US; this accounted for a slightly lower 64.73% of all tra�c but still constituted an

overwhelming majority overall.

Entity Crawler Overlap

I provide a summary of IP address overlap between entities in Table 4.9. �e data is in-

dicative of collaboration between certain entities, as discussed in Section 4.6.2. Although

I did not perform a per-entity analysis of long-term crawler tra�c, such an evaluation

could be a valuable future use case of the PhishFarm framework, as it might reveal shared

infrastructure or crawling pa�erns.
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Table 4.8: Geographical distribution of crawler requests to my websites.

Country Total Tra�c Unique IPs

United States 64.73% 79.02%

United Kingdom 6.66% 2.42%

Germany 4.72% 1.30%

Brazil 1.99% 2.04%

Italy 1.80% 0.34%

Japan 1.73% 0.43%

Netherlands 1.73% 0.76%

India 1.54% 0.76%

Canada 1.36% 1.28%

France 1.21% 0.68%

Belgium 0.85% 0.13%

Singapore 0.65% 0.30%

Ireland 0.65% 0.66%

Norway 0.65% 0.18%

Australia 0.63% 0.34%

Korea 0.50% 0.17%

Denmark 0.50% 0.12%

Estonia 0.48% 0.07%

Austria 0.45% 0.15%

Russia 0.42% 2.23%

Unknown 3.99% 1.96%

93 Others 2.75% 4.65%
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IP Overlap

Entity
Unique

IPs GSB MS APWG
Phish-

Tank
PayPal

GSB 1,788 7.94% 31.20% 18.40% 53.52%

MS 475 29.89% 29.89% 23.16% 38.11%

APWG 6,165 11.08% 2.30% 11.13% 47.96%

PhishTank 2,409 13.66% 4.57% 28.48% 47.11%

PayPal 17,708 5.40% 1.02% 16.70% 6.41%

Table 4.9: Crawler IP overlap between entities.

Total HTTP Requests Unique IP Addresses

Valid URL Invalid URL Valid URL Invalid URL

Sites Live 271,943 452,049 6,528 11,869

Day 3-14 262,141 7,230Prelim.

Total 986,133 20,874

Sites Live 355,093 545,704 22,929 54,392

Day 3-14 161,676 21,991Full

Total 1,062,473 80,085

Table 4.10: Web tra�c during and a�er website deployment.

4.6 Security Recommendations

Based on an analysis of my experimental �ndings, I propose several possible improve-

ments to the anti-phishing ecosystem.

4.6.1 Cloaking

My �rst set of recommendations focuses speci�cally on the cloaking techniques tested

by PhishFarm: In this section, I will explore the implications of potential ecosystem vul-

nerabilities and ways to address these vulnerabilities.
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Mobile Users

I believe that the highest priority within the current ecosystem should be e�ective phish-

ing protection for mobile users. Such users are not only inherently more vulnerable to

phishing a�acks [131], but now also comprise the majority of web tra�c [120].

My work has been impactful in be�er securing mobile users by enhancing existing

anti-phishing systems. For over a year between mid-2017 and late 2018, GSB blacklists

(with nearly a 76% global market share at the time) simply did not function properly on

mobile devices: none of my phishing websites with Filter A, E or F (targeting both desk-

top and mobile devices) showed any warnings in mobile Chrome, Safari, or Firefox despite

being blacklisted on desktop. I con�rmed the disparity between desktop and mobile pro-

tection through periodic small-scale testing, and by analyzing a separate dataset of tra�c

to real phishing websites, as discussed in Chapter 6. Following my disclosure, I learned

that the inconsistency in mobile GSB blacklisting was due to the transition to a new mo-

bile API designed to optimize data usage, which ultimately did not function as intended.

Because blacklisting was not recti�ed a�er the full tests, I contacted the entities anew. As

a result, in mid-September 2018 Mozilla patched Firefox (from version 63) such that all

desktop warnings were also shown on mobile. Google followed suit days therea�er with

a GSB API �x that covered mobile GSB browsers retroactively; mobile Chrome and Safari

now mirror desktop listings, albeit with a shorter-lived duration to lower bandwidth us-

age. Chrome, Safari, and Firefox thus again join Opera as mobile browsers with e�ective

blacklists, though some popular mobile browsers still lack such protection [131].

Upon close inspection of the preliminary test results, I found that Filter B websites

were solely blacklisted due to their suspicious URLs rather than my reports. During the

full tests, not a single website with Filter B was blacklisted in any browser, interestingly

despite the fact that crawlers did successfully retrieve many of these websites. GSB ad-
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dressed this vulnerability in mid-September 2018, together with the aforementioned API

�x. �rough a subsequent �nal redeployment of PhishFarm, I veri�ed that websites with

Filter B were being blacklisted following reports to GSB, the APWG, and PayPal. Other

entities—including ones I did not test—should ensure that websites targeted at mobile

users are being e�ectively detected.

Geolocation

Although my experiments only considered two simple geolocation �lters (US and non-

US), my �ndings are indicative of exploitable weaknesses in this area. Given the over-

whelming amount of crawler tra�c from the US (79%, per Table 4.8), Filter C should not

have been as e�ective as it proved to be. I hypothesize that other geo-speci�c �lters would

have similarly low blacklisting rates, in part due to the crawler characteristics discussed

in Section 4.5.6. Country- or region-speci�c �ltering paired with localized page content

is not an unusual sight in real-world PayPal phishing kits that I have analyzed.

JavaScript

It is trivial to implement JavaScript-based cloaking such as Filter F. �is technique proved

to be e�ective in slowing blacklisting by three of the �ve entities in the full tests. Fortu-

nately, SmartScreen bypasses this technique well, and PayPal started doing so following

my disclosure. �e broader ecosystem should be�er adapt to client-side cloaking, espe-

cially if the sophistication of such cloaking increases over time.

4.6.2 Anti-phishing Entities

I also o�er a number of more general recommendations for anti-phishing systems of

tomorrow.
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Continuous Testing

�e mere failure of mobile blacklisting that I observed during our experiments is su�-

cient to warrant the need for continuous testing and validation of blacklist performance.

Periodic deployment of PhishFarm could be used for such validation. In addition, con-

tinuous testing could help ensure that future cloaking techniques—which may grow in

sophistication—can e�ectively be mitigated without compromising existing defenses. As

an added bene�t, trends in the relative performance of di�erent entities and the overall

speed and coverage of blacklisting could be modeled.

Trusted Reporting Channels

�e phishing reporting channels I tested merely capture a suspected URL or a malicious

e-mail. While the la�er is useful in identifying spam origin, I believe a be�er solution

would be the implementation of standardized trusted phishing reporting systems that al-

low the submission of speci�c metadata (such as victim geolocation or device). Trusted

channels could allow detection e�orts to more precisely target high-probability threats

while minimizing abuse from deliberate false-negative submissions; they could also sim-

plify and expedite collaboration e�orts between anti-phishing entities and abused brands,

which may hold valuable intelligence about imminent threats.

Blacklist Speed

�e gap between the deployment of a phishing website and its blacklisting across browsers

represents the prime window for phishers to successfully carry out their a�acks. At the

level of an individual entity, cloaking has a stronger e�ect on the occurrence rather than

the speed of blacklisting. However, if I look at the ecosystem as a whole in Figure 4.4,

cloaking clearly delays blacklisting overall. My test results show that blacklisting now

typically occurs in a ma�er of hours—a stark improvement over the day- or week-long
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response time observed years ago [92, 114]. However, given the tremendous increase in

total phishing a�acks since then (on the order of well over 100 a�acks per hour in 2018 [5]),

I believe that even today’s 40-minute best-case blacklist response time is too slow to deter

phishers and e�ectively protect users. �e gap needs to be narrowed, especially by slower

entities (i.e., those not directly in control of blacklists). Future work should investigate

the real-world impact of delays in blacklisting on users and organizations victimized by

phishing a�acks in order to accurately establish an appropriate response threshold.

Phishing Volume

GSB, the APWG, and PayPal crawled nearly all of the phishing websites I reported. In

particular, GSB proved to deliver a consistently agile response time despite the high num-

ber of reports I submi�ed. Other entities fell short of this level of performance. With the

increasing volume of phishing a�acks being observed in the wild, it is essential that all

players in the ecosystem remain robust and capable of delivering a consistent response.

Data Sharing

Data sharing has long been a concern within the ecosystem [90]. I found that the two main

blacklist operators (GSB and SmartScreen) did not appear to e�ectively share data with

each other, as per Table 4.7. However, clearinghouse entities (APWG and PhishTank) and

PayPal itself showed consistent protection across all browsers. Unfortunately, the speed

and overall coverage of clearinghouses appear to be inferior to those of the blacklist op-

erators in their respective browsers. Closer cooperation could thus not only speed up

blacklisting, but also ensure that malicious websites are blocked universally. Strengthen-

ing this argument, perhaps a breakdown in communication between the systems used by

di�erent entities accounted for the phishing websites that were successfully crawled, but

not ultimately blacklisted during my experiments.
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4.7 Limitations

My �ndings are based on a controlled (to the extent possible without sending out real

spam e-mails) empirical experiment and observations from a large set of supporting meta-

data and a high volume of anti-abuse crawler tra�c. My study focuses exclusively on na-

tive phishing blacklist protection that is available by default in the browsers and platforms

tested. Systems with third-party security so�ware may see enhanced protection [114],

though cloaking can also have an impact on the systems powering such so�ware.

Within its scope, my analysis should still be considered with certain limitations in

mind. I suspect that real-world blacklisting of phishing a�acks may be more timely than

what my results otherwise suggest, as my e�orts to isolate cloaking as a variable in the

experimental design (i.e., by using randomized domain names, never rendering the ac-

tual phishing content in browsers being monitored, and using .com domains months a�er

registration) also eliminated many of the methods that the ecosystem can use to detect

or classify phishing (e.g., URL-, network-, or DNS-based analysis). However, this reduced

detectability is o�set, to an extent, by the possibility of malicious actors to likewise evade

such forms of detection. I observed in the preliminary tests that only URLs containing

brand names were quicker to be blacklisted than others; in the wild, there is also a shi�-

ing tendency to abuse compromised infrastructure and distribute random phishing URLs

in lieu of more deceptive alternatives [41, 102]. In terms of factors under my control, it

was not �nancially feasible to achieve a one-to-one mapping between IP addresses and all

of my domains; this is a skewing factor which may have acted in favor of blacklists in the

full tests, such as with the ten Filter D websites which were blacklisted despite not being

successfully retrieved during the GSB experiment.

Finally, I only submi�ed a single and direct report for each phishing website deployed.

Although real-world phishing websites might see a much higher volume of automated
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reports (e.g., from sources such as spam �lters), the volume of per-URL phishing reports

in the wild can, in fact, be reduced by a�ackers (e.g., through the use of redirection links).

More importantly, direct reports such as ours (in particular to the blacklist operators)

might be subject to more suspicion because anti-phishing entities must account for ad-

versaries who willingly submit false reports or seek to pro�le crawling infrastructure.

Although the blacklist operators to which I disclosed did not express concern with my

reporting methodology, I learned that the crawling infrastructure used to respond to di-

rect reports is indeed designed to be unpredictable to mitigate adversarial submissions.

SmartScreen’s lower crawl rate may be explained by this; GSB, on the other hand, consis-

tently responded quickly and seemed to give the direct reports a high level of priority. It

is, therefore, possible that either the classi�cation of reporting channel abuse works very

accurately, or that reporting channels are more vulnerable to adversarial submissions than

what the entities otherwise believe; regardless, to improve the future e�ectiveness of re-

porting, I propose an alternative approach in Section 4.6.2 and I implement this approach

in Chapter 5.

Ultimately, if each report represents a chance that a phishing website will be black-

listed, I believe that my experimental design still captures trends therein; moreover, my

�ndings with respect to cloaking e�ectiveness are consistent with internal PayPal e-mail

and web tra�c data pertaining to actual victims of phishing. To address its current limita-

tions, the PhishFarm framework could be adapted to follow a di�erent (possibly collabora-

tively arranged) reporting methodology, consider a broader range of cloaking techniques,

or even be applied to proactively-detected live phishing URLs for which cloaking can be

pro�led.
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Statistical Tests

In the full tests, I was surprised to �nd the blacklisting performance of each entity with

respect to the di�erent �lters to have far more clear-cut gaps than in the preliminary tests;

11 of the 30 the per-entity �lter groups saw no blacklisting whatsoever (per Table 4.7). Al-

though ANOVA as originally planned could still be meaningfully applied to the subset of

entities which had three or more �lter groups that satis�ed homogeneity of variance [20]

(i.e., had some blacklisting activity), I chose not to perform such tests as the resulting

power would be below my target, and instead relied on direct observations supported

by crawler metadata. If my experiments were to be repeated to validate improvements

in blacklisting or continuously test the ecosystem, I believe that statistical tests could be

highly useful in assessing whether per-entity blacklisting performance improved signi�-

cantly for each respective cloaking �lter.

4.8 Related Work

To the best of my knowledge, the work in this chapter is the �rst controlled e�ort to

measure the e�ects of cloaking in the context of phishing. Several prior studies measured

the general e�ectiveness of anti-phishing blacklists and the behavior of phishing kits;

none of the prior work I identi�ed considered cloaking, which may have had a skewing

e�ect on the datasets and ecosystem �ndings previously reported. Cloaking itself has

previously been studied with respect to malicious search engine results: Invernizzi et

al. [58] proposed a system to detect such cloaking with high accuracy. I later studied the

nature of server-side cloaking techniques within phishing kits and proposed approaches

for defeating each (as discussed in Chapter 3) [102].

�e work most similar to PhishFarm is NSS Labs’ [99] recent use of a proprietary

distributed testbed [98] to study the speed of native phishing blacklisting in Chrome,
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Firefox, and Edge. �e main limitation of NSS Labs’ approach is the reliance on feeds of

known phishing a�acks; any delay in the appearance of a website in each source feed can

a�ect the accuracy of blacklisting time measurements. Furthermore, phishing websites

could be overlooked in the case of successful cloaking against the feeds. I address these

limitations by having full control over the deployment and reporting time of phishing

websites.

Sheng et al. [114] took an empirical approach to measure the e�ectiveness of eight

anti-phishing toolbars and browsers powered by �ve anti-phishing blacklists. �e authors

found that heuristics by Microso� and Symantec proved e�ective in o�ering zero-hour

protection against a small fraction of phishing a�acks, and that full propagation across

phishing blacklists spanned several hours. �is work also found that false-positive rates

in blacklists are near-zero; I thus did not pursue such tests in my experiments. While

Sheng et al.’s work was based on phishing websites only 30 minutes old and was thus

be�er controlled than earlier blacklist tests [72], the datasets studied were of limited size

and heterogeneous in terms of victim brands; the anti-phishing tools evaluated are now

dated. In addition, Sheng et al. checked blacklist status with a granularity of one hour—

longer than PhishFarm’s ten minutes.

Han et al. [51] analyzed the lifecycle of phishing websites by monitoring cybercrim-

inals’ behavior on a honeypot web server. �e authors timed the blacklisting of the up-

loaded websites across Google Safe Browsing and PhishTank. Uniquely, this work sheds

light on the time between the creation and deployment of real phishing websites. A

key di�erence in this work is my ability to customize and test di�erent con�gurations

of phishing kits instead of waiting for one to be uploaded. For instance, I could target

speci�c brands or con�gure my own cloaking techniques to directly observe the ecosys-

tem’s response. My experiments suggest a signi�cantly faster blacklist response time by
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the ecosystem than what Han et al. found; my test sample size was also nearly �ve times

larger.

Virvilis et al. [131] carried out an evaluation of mobile web browser phishing protec-

tion in 2014 and found that major mobile web browsers at the time included no phishing

protection. Like that of Sheng et al., this evaluation was empirical and based on a set

of known phishing URLs. In my work, I found that mobile Chrome, Safari, and Firefox

now natively o�er blacklist protection, but that this protection was not functioning as

advertised during my tests.

�e di�erences between today’s phishing trends and those seen in prior work show

that the ecosystem is evolving quickly. �is warrants regular testing of defenses and re-

evaluation of criminals’ circumvention techniques and a�ack vectors; it also underscores

the importance of scalable and automatable solutions. My testbed shares some similari-

ties with previous work [99, 114] but it is the only such testbed to o�er full automation

without the need for intervention during the execution of experiments, and the only one

to actively deploy websites and directly send reports to entities. It thus lends itself well to

a longitudinal measurement of anti-phishing blacklists against the latest threats, which is

essential to gaining a practical understanding of their e�cacy [75].

4.9 Summary

By launching and monitoring a large set of phishing websites, I carried out the �rst

controlled evaluation of how cloaking techniques can hamper the speed and occurrence

of phishing blacklist warnings in modern web browsers. As a result of my disclosure to

anti-phishing entities, mobile blacklisting is now more consistent, and some of the cloak-

ing techniques I tested are no longer as e�ective; others represent ongoing vulnerabili-

ties that could be addressed through tweaks to existing detection systems. Such tweaks

should also seek to improve the overall speed of blacklists to be�er counter the modern on-
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slaught of phishing a�acks. Blacklist protection should not be taken for granted; contin-

uous testing—such as that supported by my framework—is key to ensuring that browsers

are secured su�ciently, and as intended. In the next chapter, I propose methodology for

carrying out such testing while simulating the ever-evolving state of the ecosystem.

Cloaking carries a detrimental e�ect on the occurrence of blacklisting due to the

fundamentally-reactive nature of the main detection approach currently used by black-

lists; it thus has the potential to cause continuous damage to the organizations and users

targeted by phishers. Although no single entity I tested was able to individually defeat

all of my cloaking techniques, collectively the requisite infrastructure is already in place.

In the short term, collaboration among existing entities could help address their indi-

vidual shortcomings. I observed that proactive defenses (such as the URL heuristics of

SmartScreen) proved to deliver superior protection—but only under the right circum-

stances. In the long term, the ecosystem should move to more broadly implement general-

purpose proactive countermeasures to more reliably negate cloaking. It is important for

the ecosystem to be able to e�ectively bypass cloaking because it is merely one way in

which phishing websites can be evasive. For instance, with cloaking alongside redirection

chains or bulletproof hosting, phishing websites might otherwise avoid existing mitiga-

tions far more successfully than what I have observed.

Phishing has proven to be a di�cult problem to solve due to a�ackers’ unyielding

persistence, the cross-organizational nature of infrastructure abused to facilitate phishing,

and the reality that technical controls cannot always compensate for the human weakness

exploited by social engineers. I believe that continuous and close collaboration between

all anti-abuse entities, which can lead to a deep understanding of current threats and

development of intelligent defenses, is the crux of optimizing controls and delivering the

best possible long-term protection for phishing victims.
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Chapter 5

PHISHTIME: CONTINUOUS LONGITUDINAL MEASUREMENT OF THE

EFFECTIVENESS OF ANTI-PHISHING BLACKLISTS

5.1 Introduction

Due to their ubiquity in modern web browsers, anti-phishing blacklists are a key de-

fense against phishing a�acks, and they have become particularly important amid the

large volume of phishing websites that currently plague the Internet. Meanwhile, phishers

are engaged in a cat-and-mouse game with the anti-phishing ecosystem: sophistication

in phishing websites—such as the use of evasion techniques—continues to grow. Yet, the

e�ectiveness of blacklisting of websites with such evasion techniques is di�cult to mea-

sure, and there have been no methodical e�orts to make and track such measurements, at

the ecosystem level, over an extended period of time.

Despite the importance of blacklists, and even a�ention from security researchers [101,

111, 114, 131], there have been no systematic, real-world, long-term studies of the per-

formance of anti-phishing blacklists. Evasive phishing a�acks that seek to circumvent

blacklists are not only becoming more common, but have been shown to be responsible

for the majority of the real-world impact caused by traditional phishing [103]. �us, the

e�ectiveness of the blacklisting of such a�acks warrants scrutiny. In the previous chap-

ter, I showed that various cloaking techniques e�ectively slow or prevent the blacklisting

response of several key anti-phishing entities. Similar methodology can be adapted to

evaluate not only individual entities, but the collective response of the ecosystem, which

can provide deeper insight into the level of protection provided to users.
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In this chapter, I leverage and enhance the PhishFarm framework (described in Sec-

tion 4.4) to develop a new system, PhishTime, for continuously and automatically de-

tecting unmitigated phishing websites that are online, for replicating key aspects of their

con�guration in a controlled se�ing, and for generating longitudinal experiments to mea-

sure the consistency of the ecosystem’s defenses against them. �ese experiments focus

on evaluating the performance (speed and coverage1) of anti-phishing blacklists, with the

goal of improving it. By continuously identifying sophisticated phishing a�acks in the

wild and by continuously monitoring the response of anti-phishing blacklists to these

sites’ evasion techniques, with minimal manual e�ort, PhishTime can identify gaps within

blacklisting as well as gaps in the broader anti-phishing ecosystem.

In the �rst longitudinal study of its kind, I deploy the PhishTime framework over the

course of one year to measure the performance of three blacklists—Google Safe Brows-

ing, Microso� SmartScreen, and Opera—across major desktop and mobile browsers (which

collectively have an overwhelming global market share [95]). During this period, I sys-

tematically launched and reported 2,862 new and previously unseen (innocuous) PayPal-

branded phishing websites as part of six large experimental deployments. I designed my

experiments using observations from real phishing websites detected with the help of

my framework. As a result, I con�gure my own websites with a variety of evasion tech-

niques representative of phishing a�acks in the wild. I then precisely evaluate blacklists’

response to these websites. Similarly to the original PhishFarm experiments, these exper-

iments were carefully controlled to avoid confounding e�ects (e.g., each website used a

unique, previously-unseen .com domain).

I �nd that although blacklists have an average response time of as li�le as 55 minutes

against unsophisticated phishing websites, phishing websites with evasion techniques

commonly used in the wild, such as redirection links with server-side cloaking, delay
1�ese metrics are discussed in more detail in Section 5.3
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blacklists’ response up to an average of 2 hours and 58 minutes, and are up to 19% less

likely to be detected. I also �nd it feasible for a�ackers to re-use domains for multiple

phishing websites: with evasion, such websites are still blacklisted up to 1 hour and 20

minutes slower than unevasive ones. Even such a seemingly short delay can cause 20%

more users to fall victim to each a�ack [103]. �erefore, delays to blacklisting as a result

of evasion represent a serious security concern.

As part of my tests, I show that new evidence-based phishing reporting protocols (i.e.,

that allow the submission of evidence such as a screenshot in addition to a URL) [23] are

essential to improving the protection o�ered by blacklists, and I perform the �rst compar-

ison of such a protocol alongside traditional URL reporting [46]. In addition, I con�rm the

improvements made by Mozilla to mobile Firefox as a result of the PhishFarm disclosure

(discussed in Section 4.6.1), but I also �nd that mobile Chrome and mobile Safari con-

tinue to receive a far lesser degree of protection than their desktop counterparts. Lastly,

I identify several other weaknesses within the ecosystem, including a class of behavior-

based JavaScript evasion techniques (discovered by PhishTime) that completely avoided

blacklisting during my experiments.

I conclude that enhanced anti-phishing protection on mobile devices, and the expan-

sion of evidence-based phishing reporting protocols, are critical ecosystem improvements

that could be�er protect users against modern phishing a�acks, which are marked by a

high degree of evasiveness against detection infrastructure. I disclosed my �ndings to

the corresponding entities within the ecosystem, and I am collaborating with the Anti-

Phishing Working Group (APWG) to permanently integrate the PhishTime framework as

an ecosystem service. �e contributions of this chapter are thus as follows:

• A highly automated framework for the continuous long-term empirical measure-

ment of the anti-phishing ecosystem.
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• Deployment of the framework for a longitudinal evaluation of the performance of

browser blacklists, with a focus on evasive phishing.

• An evaluation of enhanced evidence-based phishing reporting protocols.

• Identi�cation and disclosure of ecosystem vulnerabilities exploitable by phishers.

5.2 Background

As we observed in Chapter 4, browser blacklists are a key anti-phishing defense that

protects users transparently and is enabled by default in most major web browsers across

both desktop and mobile devices [101]. �us, blacklists are capable of protecting users on

the same scale at which phishing occurs.

5.2.1 Blacklist Evasion Techniques

A notable weakness of blacklists is that they are inherently reactive. Phishers capitalize

on the time gap between a phishing website’s deployment and its subsequent blacklist-

ing, and may increase return-on-investment (ROI) by prolonging this gap [51, 94]. Be-

cause blacklist detection relies on content veri�cation, blacklists are vulnerable to eva-

sion techniques which, when successful, may delay or entirely prevent blacklisting [101].

In Section 5.4, I describe my approach to testing evasion techniques commonly used in

the wild.

Cloaking is an evasion technique that seeks to hide phishing content from blacklist

infrastructure (i.e., web crawlers) while keeping it visible to human victims [58]. As we

already discussed, when a phishing website with cloaking suspects that a request is from

a crawler, it will replace the phishing content with a benign-looking page or an error mes-

sage. Cloaking has become standard in phishing kits and is commonly implemented on

both the server-side and client-side, by applying �lters based on HTTP request a�ributes

and device characteristics [102].
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Redirection links make it more di�cult for anti-phishing systems (e.g., e-mail spam

�lters or blacklists) to correlate a link in a lure with a known phishing URL [19]. Because

blacklists block phishing websites based on their URLs, phishers typically distribute lures

with di�erent URLs that then redirect [40] to the �nal phishing URL. �e HTTP redirec-

tion chain itself may implement cloaking to further evade detection, and a one-to-many

mapping may exist between redirection links and phishing websites to dilute each link’s

perceived maliciousness [138]. Phishers commonly abuse URL shortening services to cre-

ate redirection links [19].

Compromised infrastructure is regularly used by phishers to host phishing kits [1,

65]. Such infrastructure—which otherwise contains legitimate websites—poses a partic-

ular challenge to blacklists, as the blacklists must ensure that the legitimate content is

not blocked alongside the phishing content (e.g., may only di�er in the path of a URL on

the same domain [10]). Some phishing kits exploit this phenomenon by generating many

sub-folders under one domain, all of which must then be individually blacklisted [103].

5.2.2 Reporting Protocols

Just as individual users rely on browser blacklists to stay safe from phishing, the orga-

nizations impersonated by phishing websites rely on blacklists to protect their customers.

�ese organizations typically obtain phishing reports from their customers and forward

the identi�ed URLs to blacklists, either directly or through the help of third-party ven-

dors [106].

Blacklists predominantly accept reports of phishing websites in the form of a bare

URL [44, 48, 84, 97]. However, such reports can prove ine�ective if the website success-

fully uses evasion, as the blacklist may mistake the website as benign and thus fail to

act appropriately on the report. Reporting protocols that facilitate the submission of ad-
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ditional evidence (e.g., screenshots or page source) are currently available on a limited

scale [23]; I test one such protocol in Section 5.8.6.

5.3 Blacklist Evaluation Metrics

In this section, I explain the metrics that I use to evaluate blacklists in the remainder

of this chapter. I also describe the speci�c blacklists that will be considered.

5.3.1 Blacklist Performance

For the longitudinal study in this chapter, I generalize the evaluation metrics origi-

nally used by PhishFarm (in Section 4.5.2) to be�er capture the practical characteristics of

blacklists.

Discovery refers to a blacklist’s ability to identify new URLs in the wild that are sus-

pected of hosting phishing content. A blacklist with ideal discovery would know of ev-

ery URL within the population of live phishing URLs. Discovery can result from direct

phishing reports or other ecosystem sources, such as monitoring of e-mail spam, website

content, or web tra�c [11, 32, 71, 100, 103].

Detection refers to a blacklist’s ability to correctly classify the discovered URLs, such

that URLs with phishing content are added to the blacklist. A blacklist with ideal detection

would not only �ag every true-positive phishing URL, but it would do so promptly at the

time of discovery to minimize the potential damage caused by the phishing website. �us,

I can break detection into two sub-metrics: For any set of phishing URLs discovered by

a blacklist, coverage is the proportion of these URLs which are blacklisted at any point

while they host live phishing content. Speed is the amount of time that elapses between
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Figure 5.1: High-level overview of the PhishTime framework.

discovery and blacklisting. It is therefore desirable for blacklists to deliver high coverage

and fast speed2.

5.3.2 Selection of Blacklists

�roughout this chapter, as in Chapter 4, I consider three major browser blacklists:

Google Safe Browsing (GSB), Microso� SmartScreen, and Opera’s fraud and malware pro-

tection. I focus my evaluation on these blacklists because of their large global market

share [95]. I pay particular a�ention to GSB due to its overwhelming potential impact.

My methodology and framework could naturally be applied to evaluate any other

blacklists or browser-based detection systems.

5.4 PhishTime Overview

As I discussed in the previous chapter, an e�ective way to empirically evaluate the

performance of anti-phishing blacklists is to deploy a large batch of specially-con�gured

test phishing websites, report the websites directly to blacklists, and then monitor each
2Perfect detection is nontrivial in part because blacklists must maintain a very low false-positive rate to

avoid disrupting legitimate websites [136].
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website to see if and when it is blacklisted [101, 106]. �us, for my longitudinal evaluation

of blacklist performance, I make a series of such deployments, at regular intervals, over

an extended period of time. Within each deployment, I con�gure multiple distinct batches

of websites to support di�erent experiments.

�e goal of my experiments is to provide insight into potential gaps within the ecosys-

tem, which could, in turn, lead to actionable security recommendations. �erefore, I seek

to closely replicate the phishing website con�gurations (i.e., evasion techniques) used by

a�ackers. To identify such con�gurations and guide my experimental design, I develop

the PhishTime framework, as shown in Figure 5.1.

�e PhishTime framework is a systematic, semi-automated approach for identifying

evasive (i.e., unmitigated) phishing websites in the wild. I use the framework to charac-

terize both typical and emerging evasion techniques used by real phishing websites. Un-

derstanding the ecosystem’s response to typical phishing enables identi�cation of gaps

currently being exploited by a�ackers, whereas analysis of less prominent emerging eva-

sion techniques allows me to take a proactive approach to mitigate the expansion of so-

phisticated developments in phishing.

First, I continuously build a sample of real, live phishing URLs ( 1 ). In my deployment,

I collected PayPal phishing URLs listed in the APWG eCrime Exchange (a key clearing-

house of phishing URLs) [7] as well as URLs reported directly to PayPal via e-mail. I then

start periodically monitoring the status of each URL on blacklists of interest ( 2 ) for as

long as it is live. If a URL is not initially blacklisted, I report it to the blacklists, and to

various other anti-phishing entities, in an e�ort to get it blacklisted (using the reporting

infrastructure and approach described in Section 5.7). As I continue monitoring blacklist

status, I prune URLs that are blacklisted within a reasonably short time period and I retain

those that are not ( 3 ). I chose a blacklisting cuto� of two hours to eliminate URLs that

blacklists could successfully detect, but likely originally failed to discover [101].
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Figure 5.2: Timeline of framework & experiment deployments.

I then inspect the remaining URLs to identify why they have been evading blacklist

detection. I manually analyze the evasion techniques used as well as the behavior (i.e.,

general appearance and user interface) of the website ( 4 ). I performed this step by �rst

visiting each URL, and then testing di�erent variations of request parameters until the

content could successfully be retrieved. �us, it is possible to infer the server-side evasion

techniques used by each phishing website. I also analyze each website visually, and I look

at client-side source code to not only understand any evasion logic, but to compare the

websites to samples of known phishing kits (made available to me) to determine which

are the most common.

A�er analyzing a representative sample of URLs, I abstract the key trends that I ob-

served and design experiments to replicate them ( 5 , Section 5.6). Finally, I deploy these

experiments ( 6 , Section 5.7) and use the �ndings to make security recommendations for

speci�c blacklists or for the ecosystem as a whole ( 7 , Sections 5.8 and 5.10). �e �ndings

can then in�uence the design of experiments in successive deployments of the framework.

5.5 PhishTime Analysis

I used the PhishTime framework in January 2019 to identify phishing websites in the

wild capable of successfully evading blacklisting for extended periods of time. I show a

timeline of my experiment deployments, and my ecosystem analysis using PhishTime, in

Figure 5.2. I obtained permission from PayPal, Inc. to use PayPal-branded phishing web-

106



sites throughout my experiments3. �erefore, in my analysis, I also focus on PayPal phish-

ing websites in the wild. I then characterized typical evasion techniques used by these

websites, and I designed experiments which entailed deploying a series of PhishFarm-

cra�ed phishing websites to empirically measure the response of blacklists to these tech-

niques in a controlled manner. Later, in August 2019, I used the framework to identify less

common (but more sophisticated) emerging evasion techniques, and I designed additional

experiments to test these techniques.

5.5.1 Typical Evasion Techniques

In total, I analyzed 4,393 distinct phishing URLs in the wild and I found 183 fail to be

promptly blacklisted. Although this may seem like a relatively small number, prior work

has shown that the majority of real-world damage from phishing occurs from a small

fraction of known phishing URLs [103]. Moreover, the total URL count for the ecosystem

as a whole would likely be far higher, as I only focused on a single brand in my analysis.

Of these 183 websites, 96 were never blacklisted anywhere before going o�ine (the

average observed lifespan was 17 hours, 12 minutes), 87 were ultimately blacklisted in at

least one desktop browser (with an average observed speed of 7 hours, 4 minutes) and

23 were ultimately blacklisted in at least one mobile browser (with an average observed

speed of 12 hours, 2 minutes). I also observed ten websites which remained live, without

blacklisting, for over one week. Note that due to the inherent delay between an a�acker’s

deployment of a phishing URL and its appearance in a report or feed, the aforementioned

timings represent lower bounds.

By analyzing URLs in the e-mail lures reported to PayPal, I found that 177 of these

websites had lure URLs which redirected to a di�erent �nal landing URL with the phishing

content. I observed redirection URLs both through third-party redirection services and
3In the current ecosystem, PayPal is among the brands most commonly targeted by phishers [127].
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a�acker-controlled domains. In the la�er case, I commonly observed JavaScript-based

redirection alongside traditional HTTP redirection [40]. I also observed that at least 146

of these websites used some form of server-side cloaking [102]: I was unable to retrieve

their content using a cloud-based web crawler but succeeded when using a mobile IP

address or anonymous VPN service.

At least 42 websites had URLs with multiple paths or subdomains on the same domain,

which re�ects phishers’ tendency to re-use infrastructure.

5.5.2 Emerging Evasion Techniques

I found that eight of the 96 phishing websites which were never blacklisted imple-

mented clever mechanisms to evade detection: �ve presented visitors with a CAPTCHA

challenge before displaying the phishing content, two required the user to click on a but-

ton in a popup window prior to redirecting to the phishing page, and one would not

render content prior to detecting mouse movement. I refer to these evasion techniques as

behavior-based, because they require a speci�c user behavior to display phishing content.

5.6 Experimental Design

We now transition from simply observing the ecosystem to actively measuring it: to

methodically test the phishing website con�gurations observed in the wild, I replicate

them across a large sample of my own (innocuous) phishing websites which I deploy,

report the respective URLs to anti-phishing entities, and monitor the speed and coverage

of blacklists as they respond to my reports.

In total, I made one preliminary deployment in March 2019, and six main experi-

mental deployments at regular intervals between May 2019 and January 2020. �e pur-

pose of the preliminary deployment—which mirrored the con�guration of the �rst main

deployment—was to verify the soundness of my experimental design and technical cor-
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rectness of my framework. I summarize my deployments in Table 5.1; a more explicit

breakdown is found in Table B.1 in Appendix B.

Across the main deployments, I launched 2,862 phishing websites as part of seven dif-

ferent experiments. I registered a total of 2,646 new .com domain names for these websites.

Because some of my experiments involved redirection links, an additional 1,296 such links

bring my total URL count to 4,158. As my experiments seek to make multiple di�erent

measurements over time, each deployment includes several di�erent experiments.

Each experiment consists of one or more distinct batches of phishing websites: groups

that share a single con�guration corresponding to a speci�c experiment. I chose my batch

size, 54, by dividing the estimated number of total batches by the number of domain

names I could purchase for this research. �is sample size is similar to prior empirical

measurements and is designed to be large enough to support statistically-signi�cant in-

ferences [101].

Deployment Per Deployment Total

Experiment 1

May

2

Jul.

3

Sep.

4

Oct.

5

Nov.

6

Dec.
Batches Websites URLs Batches Websites

Domains

Registered

A Baseline X X X X X X 1 54 54 6 324 324

B Basic Evasion X X X X X X 1 54 54 6 324 324

C Typical Evasion: Redirection X X X X 3 162 324* 12 648 1,080

D Domain Reuse X X X X 3 162 324* 12 648 0

E Discovery X X X X 2 108 108 8 432 432

F Emerging Evasion X 7 378 378 7 378 378

G Evidence-Based Reporting X 2 108 108 2 108 108

Table 5.1: Experiments conducted during each main deployment (*half are redirection

links).
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5.6.1 Measuring Blacklist Speed and Coverage

�e experiments in this section focus primarily on measuring the detection perfor-

mance (i.e., speed and coverage) of blacklists. As I believe that it is generally infeasible for

a�ackers to avoid discovery when conducting traditional phishing a�acks (e.g., at scale

through e-mail spam), my reporting methodology seeks to ensure that all URLs I deploy

as part of these experiments are promptly discovered by the blacklists I test. I do so by

simultaneously reporting the URLs to multiple blacklists and other anti-phishing entities,

which I elaborate on in Section 5.7.2.

Experiment A: Baseline. For my simplest experiment, I launch a single batch of

basic phishing websites, with no evasion technique, once in each deployment. �ese, and

all other websites I deploy, used HTTPS to match typical phishing websites in the wild [7].

�is experiment serves two key purposes: to establish a baseline for the best-case speed

and coverage provided by blacklists (which can then be compared to other experiments)

and to measure if these metrics remain consistent over time.

Experiment B: Basic Evasion. In this experiment, I test two straightforward cloak-

ing techniques inspired by my observations in Section 5.5.1: websites that allow only traf-

�c from browsers with a mobile user agent [40, 58], and websites which render content

using JavaScript. I alternate these two cloaking techniques between deployments.

�is experiment allows us to evaluate blacklists’ response to slightly more sophis-

ticated phishing by comparing against the baseline response in Experiment A. It also

establishes a point of comparison for even more sophisticated phishing in later exper-

iments. A secondary objective of these experiments is to assess blacklist coverage (on

mobile devices) of phishing websites aimed speci�cally at mobile users. Mobile devices

have historically been prone to phishing [131], and recent work has shown that mobile

blacklists only contain a subset of known phishing URLs [101].
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Experiment C: Typical Evasion (Redirection). Each deployment of this experi-

ment consists of three batches of websites, with a focus on evaluating the evasiveness

of redirection. In a 1-1 mapping, I pair each phishing website with a di�erent URL (on

a di�erent domain) that redirects to it with an HTTP 302 status code [40]. For this ex-

periment, I only report the redirection URLs (i.e., the URLs that could serve as lures in a

phishing e-mail). I con�gured each phishing website with the same evasion technique as

Experiment B in the respective deployment.

In the �rst of the three batches, I used a popular link shortening service, bit.ly, to

generate each of the redirection links. Such services are commonly used by a�ackers to

scalably generate unique lures. In the second of the three batches, I used my own .com

domains for the redirection links. In the third batch, I also used .com domains for the

redirection links, but I additionally con�gured them with server-side IP and hostname

cloaking [102]. �e la�er batch thus most closely mirrors the typical con�guration of the

phishing websites that I observed in Section 5.5.1. I based the cloaking technique in this

batch on the �ltering directives found in a .htaccess �le4 from a proli�c phishing kit that

I was able to download from a live phishing website during the PhishTime analysis ( 3 ).

Because I only change one variable between the three batches, I can compare the

blacklisting of phishing websites that combine redirection with cloaking on both the lure

and the phishing website with the blacklisting of websites with lesser degrees of evasion.

I can also evaluate the feasibility for a�ackers to use, and the ecosystem’s mitigation of,

third-party redirection services.

Experiment D: Domain Reuse. A�er the completion of each Experiment C deploy-

ment, I generate websites with di�erent URL paths [10], but on the same domains as the
4Interestingly, the contents of this .htaccess �le were highly similar to one I originally analyzed in Chap-

ter 3. �us, we observe that even advanced phishing kits might re-use old implementations of cloaking

techniques.
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websites in Experiment C. I then redeploy these websites as part of a new experiment,

which seeks to measure how blacklist speed and coverage changes when phishers re-use

domains and infrastructure to carry out successive a�acks (a strategy intended to increase

phishers’ ROI).

Experiment F: Emerging Evasion. �ese websites mirror the sophisticated, emerg-

ing evasion techniques I observed in Section 5.5.2. �ree batches implement evasion us-

ing JavaScript code that I found in the wild for CAPTCHA, popup, and mouse movement

cloaking, respectively. �ree additional batches have the same con�guration but with

added .htaccess server-side cloaking, as in Experiment C. One �nal batch had only .htac-

cess cloaking, as a control group.

5.6.2 Other Measurements

�e remaining experiments (E and G) follow a di�erent reporting methodology than

those in the previous section.

Experiment E: Discovery. In this experiment, I launch two batches of websites, per

deployment, which mirror con�guration of Experiments A and B. However, I only report

each batch to a single anti-phishing entity (PayPal or the APWG), alternating between

deployments. �us, by comparing against Experiments A and B, I can evaluate how well

my primary reporting methodology ensures prompt discovery by blacklists. I can also

directly test the performance of speci�c anti-phishing entities: I chose PayPal’s own anti-

phishing system because my websites used the PayPal brand, and I chose the APWG

because it had been shown to reliably share phishing URLs with other entities [7, 101].

Experiment G: Evidence-Based Reporting. At the time I initially designed my ex-

periments, Google Safe Browsing only allowed the submission of bare URLs when report-

ing phishing (whether manually or programmatically). However, in July 2019, with the

release of the Chrome Suspicious Site Reporter (CSSR) [23] plugin, manual reports could
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Figure 5.3: Steps in each deployment.

now be enhanced with additional evidence: a screenshot, the redirection chain for the re-

quest, as well as the IP address and user agent used to make the request. To evaluate if this

enhanced reporting approach could help improve blacklists’ detection of evasive URLs, I

designed this additional experiment to compare the coverage of GSB when reporting with

the old and the new method.

I con�gured the two batches of phishing websites in this experiment with cloaking

that limits tra�c to US IP geolocations: a strategy which, as we observed in the previous

chapter, was capable of evading GSB [101]. I reported one batch via CSSR [23] and the

other batch to GSB via the traditional URL submission form [48]. Because CSSR only

supports manual submissions, I compared it to another manual submission channel.

5.7 Implementation of Experiments

I leveraged PhishFarm (as outlined in the previous chapter) as the testbed for deploying

the phishing websites needed for each of the PhishTime experiments [101]. �e testbed en-

ables automated con�guration, deployment, and monitoring of innocuous but real-looking

phishing websites to empirically measure the anti-phishing ecosystem.

5.7.1 Overview

In Figure 5.3, I provide an overview of the steps I took to deploy each experiment.

First, I prepare the hosting infrastructure ( A ). I used the aforementioned testbed to host
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my phishing websites across a total of 42 cloud-based Apache web servers. At the time

of each deployment, I con�gure DNS records to point the required domains to these web

servers, and I install Let’s Encrypt SSL certi�cates for each domain. Next, I con�gure the

phishing website content and behavior (i.e., evasion techniques) for each URL, and I test

this con�guration to verify the correct operation of the framework ( B ). I then activate the

websites and immediately report their URLs to the anti-phishing entities speci�ed by the

experimental design ( C ). Over the course of the next seven days, I monitor the blacklist

status of my URLs and I collect web tra�c metadata ( D ). Finally, I deactivate the websites

and analyze the data that has been collected ( E ). Although I supervised each deployment,

each of these steps is otherwise fully automated.

My phishing websites matched the look and feel of the PayPal.com login page as it

appeared in January 2019. Whenever a crawler visit was subject to the cloaking technique

in use by a particular website, I would display a generic 404 error message [40], as shown

in Figure 5.4. To avoid confounding e�ects, I did not change the appearance of my websites

between deployments, and I used randomized, non-deceptive URLs for each. Possible

implications of this are discussed in Section 5.12.

5.7.2 Reporting to Blacklists

To allow for automated experiments and to maintain consistency across deployments,

I fully automated my reporting methodology. My approach is representative of the ac-

tions that an organization targeted by phishers might take to mitigate known phishing

websites [101].

To report each of my phishing websites, I submit its URL directly to Google Safe

Browsing via the Phishing Protection Submission API [46]5 and to the APWG via the
5At the time of my deployments, the Phishing Protection Submission API was in a beta stage and not

available to the public. Google provided us with access to the API for this research.
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eCrime Exchange API [7]. Direct API reporting is not available for Opera and Microso�

SmartScreen. However, prior work has shown that the APWG and other major anti-

phishing entities share data with these blacklists [101, 111]. �erefore, I report to these

additional entities via e-mail. Using a PayPal-branded phishing e-mail template found in

the wild, I generate a fake phishing e-mail with the URL of the website. I then forward

this e-mail as an a�achment to top anti-phishing entities that accept reports from the

public: PhishTank [107], Netcra� [97], PayPal [105], and US CERT [43]. �is reporting

methodology seeks to guarantee all blacklists’ discovery of my phishing websites (thus,

it does not apply to Experiments E and G, as previously discussed in Section 5.6.2).

5.7.3 Blacklist Monitoring

For my blacklist metrics, I used a total of 40 virtual machines (VMs) to empirically

monitor blacklisting of each website at least once every ten minutes across six desktop

browsers: Chrome, Safari, Firefox, Edge, Internet Explorer, and Opera. To determine the

speed of blacklisting on mobile, I monitor Google Safe Browsing programmatically using

the Update API [48]. Using a single physical Android device (connected to the Internet

over Wi-Fi), I also empirically compared the coverage of mobile Chrome, Firefox, and

Opera to their desktop counterparts.

I used one VM to check if any of my URLs had been taken down (mainly to monitor

bitly.com links), and another to check my SSL certi�cates against Let’s Encrypt’s certi�cate

revocation list.

Beyond measuring the time of initial blacklisting of each URL, I also wanted to mea-

sure the persistence of blacklisting and possible de-blacklisting. �e system, therefore,

continued monitoring every URL for the full duration of each experiment, and for a one-

week period a�erward.
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5.7.4 Infrastructure Changes

To support the expanded requirements of PhishTime, I made several additions to the

PhishFarm testbed.

SSL Certi�cates: As of 2019, the majority of phishing websites in the wild have

switched to using HTTPS [7]. �erefore, I mirror this trend in my research and developed

a series of scripts to automatically provision Let’s Encrypt certi�cates for my phishing

websites. Although Let’s Encrypt does not claim to revoke certi�cates tied to malicious

websites [69], to verify, I additionally developed functionality to check my certi�cates’

revocation status via OCSP [93].

Redirection Links: Because many of my experiments involve the use of redirection

links, I added a framework module for automatically con�guring and monitoring redirec-

tion URLs that point to speci�c batches of my own phishing URLs. In addition to using

dedicated domains for redirection, third-party redirection services are also supported. In

the la�er case, the monitoring system checks to see if the service has taken down the URL

(i.e., by marking it as malicious and disabling the normal redirection).

Google Safe Browsing API: To eliminate the need for manual reporting in my longi-

tudinal measurements, I added a module for programmatically reporting URLs to Google

via the GSB API. To facilitate the scalable monitoring of mobile blacklisting, as discussed

in the previous section, I also added functionality to programmatically (and anonymously)

monitor the GSB blacklist status of my websites.

PhishTime Analysis: To adapt the PhishFarm framework to monitor phishing web-

sites in the wild (as required by PhishTime), I made several changes to the Research

Client, as originally introduced in Section 4.4.2 in Chapter 4. With these changes, the

client gained an ecosystem monitoring mode which facilitates the reporting of unmitigated

phishing websites to blacklists and performs subsequent monitoring of blacklist status.
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5.7.5 Con�guration and Experimental Controls

(a) Successful request. (b) Request denied by cloaking.

Figure 5.4: Appearance of the phishing websites used in the PhishTime experiments.

I took care to ensure the reliability of my experimental data by precisely controlling

numerous aspects of my website con�guration and deployment.

Eliminating Confounding E�ects. To the extent possible, I sought to prevent any

external factors—such as the high volume of monitoring tra�c or content of my websites’

URLs—from skewing my blacklist measurements. �erefore, I con�gured my websites to

never render phishing content for requests originating from my monitoring infrastruc-

ture’s IP addresses.

To ensure that no prior malicious activity would impact my phishing URLs, I registered

a unique (and thus previously unreported) domain name for each URL (with the exception

of Experiment D, in which I deliberately measured domain re-use). My domains and URL

paths consisted of combinations of random English words to limit the e�ect of heuristics

and URL �ngerprinting [138] in successive deployments of my websites. I discuss certain

trade-o�s of this decision in Section 5.12.

Experimental Variables. Within each experiment, I varied the con�guration of

di�erent batches in at most one way, such that I could focus the comparative analysis

117



on a single variable. �e same concept also applies between the majority of my exper-

iments, which can thus collectively paint a multi-dimensional view of the response of

anti-phishing blacklists.

Reporting. To avoid bias, each of my e-mail reports originated from a di�erent e-mail

address, and information such as the (�ctitious) victim name or transaction amount was

randomized within each e-mail. I also thro�led the reports to avoid an excessive reporting

rate.

Experiment Duration. Anti-phishing blacklists typically respond within a ma�er of

hours [103]. However, in certain cases (e.g., due to cloaking), blacklisting may be delayed

by several days [101]. �is observation, combined with occasional long-lasting phishing

websites during the PhishTime analysis, motivated my conservative choice of a one-week

lifespan of each phishing website within my experiments.

Testing. Before starting each deployment, I tested the availability of my domains,

servers, monitoring infrastructure, and reporting infrastructure to prevent any unantici-

pated technical challenges.

Preliminary Deployment. Before the �rst deployment of the main experiments, I

carried out a preliminary deployment with batches of websites con�gured as de�ned for

Experiments A through F. �is deployment used its own set of 864 URLs with 486 unique

domain names.

�e purpose of this deployment was to verify the soundness of my experimental de-

sign and the technical correctness of my testbed, such that I could make any necessary

changes to either prior to the subsequent deployments. �us, I maximize the quality of

my experimental data while ensuring that the many domains purchased for this research

are not wasted.

�e preliminary deployment showed that phishing websites con�gured with the eva-

sion techniques I had chosen generally reduced blacklist speed compared to the baseline,
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and that my reporting methodology resulted in the prompt discovery of my URLs by all

the blacklists being tested. �erefore, I did not make changes to the experimental design.

However, this deployment also prompted me to make several optimizations to the testbed

so�ware to improve the accuracy of blacklist monitoring in the long term. I thus focus

my evaluation only on the main deployments.

5.8 Experimental Results

Desktop Mobile Avg. Tra�c

GSB SmartScreen Opera GSB: Chrome/Safari GSB: Firefox Opera

Deployment Coverage Median Speed Coverage Median Speed Coverage Median Speed Coverage Median Speed Coverage Coverage
All 200

1 May 2019 100.0% 00:44 (hh:mm) 100.0% 02:02 98.1% 00:37 100.0% 09:19 100.0% 0.0% 1677 1151

2 Jul. 2019 100.0% 00:51 100.0% 02:38 70.4% 00:32 55.6% 35:28 100.0% 0.0% 7003 1491

3 Sep. 2019 64.8% 00:50 61.1% 04:44 22.2% 01:52 13.0% 159:22 64.8% 14.8% 286 211

4 Oct. 2019 98.1% 01:00 100.0% 02:19 64.8% 00:55 50.0% 03:05 98.1% 14.8% 3756 2020

5 Nov. 2019 100.0% 01:26 100.0% 02:27 59.3% 00:38 13.0% 39:11 100.0% 0.0% 1566 682

6 Dec. 2019 100.0% 00:46 100.0% 02:34 48.1% 00:28 70.4% 00:28 100.0% 9.3% 3255 1554

Table 5.2: Blacklist performance vs. unevasive phishing (Experiment A: raw data for each

deployment).

Desktop Mobile Avg. Tra�c

GSB SmartScreen Opera GSB: Chrome/Safari GSB: Firefox Opera

Deployment Coverage Median Speed Coverage Median Speed Coverage Median Speed Coverage Median Speed Coverage Coverage
All 200

1 May 2019 89.5% 02:29 (hh:mm) 88.0% 10:20 83.4% 03:54 54.9% 07:36 89.5% 0.0% 2038 603

2 Jul. 2019 99.3% 01:46 99.5% 05:42 43.0% 01:41 0% - 99.3% 31.8% 508 53

3 Sep. 2019 79.9% 02:21 69.5% 08:24 50.1% 02:36 3.2% 34:47 79.9% 29.3% 1073 589

4 Oct. 2019 86.7% 01:32 90.0% 10:19 58.2% 01:51 0% - 86.7% 35.0% 545 45

Table 5.3: Blacklist performance vs. evasive phishing (Experiments B, C, D: average of all

deployments).

A�er the completion of all my experiment deployments, I had collected extensive data

for each of the 4,158 URLs that I launched and monitored: timestamps of blacklisting (in

six desktop browsers, three mobile browsers, and the Google Safe Browsing API), online

status, certi�cate revocation status, and web tra�c logs. �e infrastructure operated as
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expected during each main deployment and, thus, all the corresponding data was valid

for analysis.

In the analysis that follows, for any batch of URLs, I de�ne the coverage of a given

blacklist as the percentage of all URLs that were blacklisted at any point during the seven-

day deployment of the batch. For any given URL, I de�ne blacklist speed as the time

elapsed between my reporting of that URL and its subsequent blacklisting. Within an

individual batch, I either provide the median speed in tabular form or plot speed as a

function of coverage over time.

Simpli�cation of Dimensionality: My empirical blacklist monitoring of desktop

browsers revealed that Chrome and Safari consistently delivered the same speed and cov-

erage, whereas Firefox was an average of ten minutes slower (stemming from di�erent

caching of the GSB Update API [46]) but still had the same coverage. Similarly, in com-

paring Edge and Internet Explorer across all of my deployments, I found that the la�er was

12 minutes slower on average, also with the same coverage. �us, to simplify and clarify

my analysis, I exclude the desktop versions of Safari, Firefox, and Internet Explorer from

my evaluation.

On mobile devices, I found that Firefox had identical blacklist coverage as its desktop

counterpart (an improvement which resulted from the PhishFarm disclosures in Chap-

ter 4). However, neither mobile Chrome nor mobile Opera proved to be consistent with

their desktop versions. �erefore, I evaluate data from the la�er two browsers alongside

mobile Firefox.

Data Aggregation: I aggregate my blacklist measurements based on the objectives of

each experiment, as de�ned in Section 5.6. For longitudinal comparisons, I group blacklist

performance by deployment; to evaluate evasion, I aggregate multiple deployments by

experiment or batch.
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Figure 5.5: Aggregate speed and coverage of all blacklists across Experiment A (Deploy-

ments 1-6).

5.8.1 Discovery

Of the 4,158 URLs that I deployed, 4,068 received tra�c from at least one crawler. �e

94 URLs which were never visited were all part of Deployment 3: 81 URLs were part of

Experiment E (reported to a single entity) and 13 were landing pages within Experiment C.

Of all my URLs, a total of 3,514 were blacklisted in at least one browser. Of the 644

URLs which were never blacklisted, 299 were part of Experiment F (in which sophisticated

cloaking successfully evaded detection), 131 were part of Experiments E or G (which were

not designed to guarantee discovery), and 214 were part of Experiments B, C, and D (with

cloaking and redirection).

Given that the aforementioned lack of tra�c can be a�ributed to the ecosystem issues

I identi�ed during Deployment 3 (discussed in Section 5.8.2), and the fact that all websites

from Experiment A were blacklisted in at least one browser, I believe that my reporting

methodology was successful in ensuring prompt discovery by the ecosystem.
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Desktop Mobile Avg. Tra�c

GSB SmartScreen Opera GSB: Chrome/Safari GSB: Firefox Opera

Experiment Batch Coverage Median Speed Coverage Median Speed Coverage Median Speed Coverage Median Speed Coverage Coverage
All 200

Experiment A

(Baseline)
92.9% 00:57 (hh:mm) 93.2% 02:48 60.5% 00:55 57.8% 17:30 92.9% 3.7% 3452 1366

JavaScript Cloaking 88.3% 01:03 100.0% 03:30 49.4% 00:56 0.0% - 88.3% 0.0% 455 115Experiment B

(Basic Evasion) Mobile Cloaking 100.0% 00:55 100.0% 02:39 44.0% 00:38 0.0% - 100.0% 0.0% 936 207

bit.ly Redirection - Lure 86.1% 01:25 91.4% 03:02 46.3% 01:40 0.0% - 86.1% 0.0% 2313 2313

bit.ly Redirection - Landing 86.1% 02:58 88.0% 12:45 59.3% 02:46 25.9% 43:51 86.1% 25.0% 593 392

.com Redirection - Lure 83.3% 01:44 99.4% 03:09 50.6% 01:57 0.0% - 83.3% 41.4% 440 81

.com Redirection - Landing 88.9% 02:48 87.0% 09:35 59.7% 02:55 24.1% 11:46 88.9% 30.6% 740 454

.com Redirection w/ .htaccess 80.2% 01:36 77.2% 08:51 37.7% 01:31 0.0% - 80.2% 25.3% 275 28

Experiment C

(Typical Evasion

- Redirection)

.com Redirection w/ .htaccess - Landing 84.3% 02:43 86.6% 10:01 51.9% 02:33 9.3% 11:19 84.3% 32.9% 370 63

bit.ly Redirection - Lure 96.3% 01:09 94.4% 06:51 58.0% 00:41 0.0% - 96.3% 0.0% 5143 5143

bit.ly Redirection - Landing 97.2% 02:03 72.7% 11:56 58.0% 02:21 4.3% 00:01 97.2% 52.5% 876 497

.com Redirection - Lure 95.7% 01:10 99.4% 06:59 73.5% 27:24 0.0% - 95.7% 54.9% 1582 984

.com Redirection - Landing 98.1% 02:10 71.3% 11:48 66.7% 01:50 3.7% 46:28 98.1% 50.0% 1061 534

.com Redirection w/ .htaccess - Lure 93.8% 01:13 77.2% 10:07 37.7% 00:57 0.0% - 93.8% 37.0% 1051 583

Experiment D

(Domain re-use)

.com Redirection w/ .htaccess - Landing 95.4% 02:17 67.3% 12:19 45.7% 01:53 0.0% - 95.4% 40.7% 332 42

Reported to APWG 98.1% 02:47 100.0% 02:29 41.7% 02:41 51.9% 04:53 98.1% 41.7% 2901 1591Experiment E

(Discovery) Reported to PayPal 16.2% 01:06 38.4% 02:43 6.5% 00:49 13.0% 00:35 16.2% 2.8% 450 293

Mouse Movement Cloaking 0.0% - 0.0% - 0.0% - 0.0% - 0.0% - 37 34

CAPTCHA Cloaking 0.0% - 42.6% 03:06 0.0% - 0.0% - 0.0% - 47 42

Noti�cation Cloaking 0.0% - 0.0% - 0.0% - 0.0% - 0.0% - 48 41

.htaccess Cloaking 100.0% 01:37 100.0% 10:47 42.6% 00:40 0.0% - 100.0% 0.0% 702 86

.htaccess Cloaking &

Mouse Movement Cloaking
59 20

.htaccess Cloaking &

CAPTCHA Cloaking
45 19

Experiment F

(Emerging Evasion)

.htaccess Cloaking &

Noti�cation Cloaking

0 coverage

48 21

Standard URL Report 20.4% 00:38 0.0% - 0.0% - 20.4% 00:17 20.4% 0.0% 5 2Experiment G

(Reporting Methods) Chrome Suspicious Site Reporter 90.7% 10:13 0.0% - 0.0% - 90.7% 10:17 90.7% 0.0% 16 14

Table 5.4: Blacklist performance aggregated by each batch (average of all deployments).

5.8.2 Overall Blacklist Performance

In Table 5.2, I show the blacklist speed and coverage results from each of the six de-

ployments of Experiment A, as well as the average number of crawler requests to each

individual website. Because this experiment consisted solely of unsophisticated phishing

websites without any form of evasion, it allows us to establish a baseline for best-case

blacklist performance which I can compare against other experiments.

Desktop Blacklists. With an average coverage of 92.9% and an average (median)

speed of 57 minutes across the six deployments, overall, GSB proved to be the best-

performing blacklist that I tested. SmartScreen showed a slightly higher coverage of 93.2%,
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but had a slower speed of 3 hours and 47 minutes. Opera’s coverage was the lowest, at

60.5%, though its 55-minute speed managed to inch ahead of GSB.

Mobile Blacklists. �e mobile version of Firefox mirrored the 92.9% coverage of GSB

on desktop and had the highest coverage of the mobile blacklists I tested. Mobile Chrome

and mobile Safari delivered a much lower coverage of 57.8%, whereas Opera’s coverage

was minimal at 3.7%.

Although aggregate speed and coverage metrics provide an assessment of overall

blacklist performance, they fail to illustrate speci�c di�erences in behavior between black-

lists. In Figure 5.5, I plot the growth of each blacklist’s coverage over the course of the

�rst 12 hours of my deployments (the same data over the full one-week deployment is in

Figure 5.6). I observe that GSB and Opera both start blacklisting as early as 20 minutes

a�er receiving my phishing reports. On desktop platforms, coverage grows quickly and

stabilizes a�er approximately three hours; on mobile devices, coverage grows more slowly

over a longer period. SmartScreen’s earliest response occurred about one hour a�er GSB

and Opera, and grew over a seven-hour period therea�er.

Long-term Blacklist Consistency. High blacklist speed and coverage are neces-

sary to e�ectively protect users from phishing websites, but, given the pressure upon the

ecosystem by phishers [7, 47], it is equally important that blacklist performance remains

consistent in the long term. By comparing the measurements between successive deploy-

ments (in Table 5.2 and 5.3 for non-evasive and evasive phishing websites, respectively),

I can evaluate this consistency.

Per the data for Experiment A, I observe that both GSB and SmartScreen delivered

100% coverage and similar speed in �ve of the six deployments. Opera remained consistent

in terms of speed across �ve deployments. Except for GSB in mobile Firefox, blacklists in

mobile browsers did not show such consistency, however.
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Notably, there was a signi�cant drop in coverage during Deployment 3, both for non-

evasive and evasive phishing, as shown in Tables 5.2 and 5.3. In analyzing this anomaly,

I �rst ruled out technical issues in my reporting methodology and con�rmed that all of

my e-mail and API reports were successfully delivered. I also redeployed Experiment A

with prior domains and were able to reproduce degraded coverage. A�er analyzing the

results of Experiment E (summarized in Table 5.4), I found that the coverage from reports

sent directly to PayPal was similarly low: its coverage in GSB was 9.3% in Deployment

3 compared to 44.4% in Deployment 1. Upon comparing crawler tra�c between these

deployments, I found that crawler activity as a result of PayPal reports was absent from

the majority of websites in Deployment 3. Although I cannot rule out other ecosystem

factors, I believe that this absence was a key cause of the overall coverage drop, and I

disclosed this to PayPal (I later received acknowledgment of the issue).

Blacklist Persistence. Across all of my deployments, once a URL was blacklisted

in a particular blacklist, I did not observe de-blacklisting within the one-week deploy-

ment period, or within a one-week period immediately a�er each deployment. A�er the

conclusion of my �nal deployment, I monitored the URLs for an extended period of time

and found that the earliest removal from blacklists occurred 29 days a�er I had originally

reported the respective URL. During this period, my infrastructure remained online and

served 404 errors for all domains from Deployment 6.

I suspect that de-blacklisting may depend on factors such as the presence of benign

content on a domain, the domain’s reputation, or whether the web server is online. Al-

though my experiments were not designed to pinpoint criteria for de-blacklisting, I believe

that premature removal of phishing URLs from blacklists is not a signi�cant issue.
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Figure 5.6: Comparison of all blacklists’ aggregate performance for uncloaked websites

vs. websites with Mobile cloaking.

5.8.3 Typical Evasion Techniques

In Table 5.4, I show blacklist performance for the speci�c batches within each experi-

ment, aggregated across all deployments. �is allows us to compare speed and coverage

when blacklists are faced with di�erent evasion techniques.

Websites with only mobile user-agent cloaking (in Experiment B) had a negligible ef-

fect on desktop blacklisting compared to Experiment A (if I disregard the skew from De-

ployment 3): modern blacklists can, in fact, reliably detect phishing websites with certain

basic evasion techniques. Interestingly, however, both GSB and Opera had 0% coverage on

mobile devices across all deployments of Experiment B, which is very undesirable given

that Experiment B websites were con�gured to be accessible exclusively on mobile de-

vices. In Figure 5.6, I visualize blacklisting of these websites in each blacklist over the full

duration of my deployments.

125



Figure 5.7: Comparison of aggregate speed and coverage of GSB against di�erent evasion

techniques.

In Experiment C, I tested the addition of three types of redirection on top of the evasion

techniques in Experiment B. For brevity, I focus my discussion on blacklisting by GSB on

desktop, and I use the average speed and coverage across all deployments of Experiment B

(00:59 and 94.2%, respectively), calculated per Table 5.4, in the following comparisons. On

average, redirection via bit.ly links slowed blacklisting speed of the corresponding landing

pages to 02:58, and reduced coverage to 86.1%. Redirection via .com domain names slowed

the speed to 02:48 and reduced coverage to 88.9%. By adding .htaccess cloaking on top of

redirection, the speed only slowed to 02:43, but coverage fell further to 84.3%. As shown in

Table 5.4, the speed of blacklisting of the corresponding lures was at least one hour faster

in each case; however, a�ackers’ ability to easily generate many lures places an increased

importance on the blacklisting of actual landing pages [130].

In Experiment D, I re-deployed phishing websites on the same .com domains as in Ex-

periment C, but with di�erent paths, to simulate how a�ackers might re-use compromised

domains in the wild. Although I observed increased speed and coverage compared to Ex-
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periment C, the speed remained slower than in experiments without redirection. Only

4.3% of URLs in Experiment D were blacklisted immediately upon deployment, which

may represent a gap exploitable by phishers. In Figure 5.7, I visualize the di�erence in

GSB desktop blacklisting of the cloaking techniques considered in this section. To main-

tain consistency, I exclude Deployment 3 from the �gure. For clarity, I also omit the

batches with bit.ly links, as they followed the same trend as .com redirection links, and

were only blacklisted slightly more slowly.

In mobile Chrome and Safari, Experiment C coverage ranged from just 9.3% to 25.9%

and was 8 to 40 hours slower than on desktop. Only landing pages, rather than lures, were

blacklisted. Interestingly, in Experiment D, coverage dropped to a range of 3.7% to 4.3%,

despite the ecosystem’s knowledge of my domains from previously blacklisted URLs. I

discuss the implications of these �ndings in Section 5.10.

Overall, I observe that delays and gaps exist in the blacklisting of typical phishing

websites: these gaps provide a prime opportunity for a�ackers to successfully target their

victims [103], help explain the prevalence of evasion techniques and should be addressed

by the ecosystem.

Disabling of Bit.ly Links. To deter abuse, bit.ly disables redirection links which

point to known malicious content. During Deployment 1, bit.ly disabled 98.1% of the

links within Experiment C, and 88.9% of the links within Experiment D, with an average

speed of 11 hours and 36 minutes (far slower than the tested blacklists). However, except

for a single URL during Deployment 3, no other URLs were disabled over the course of

this research. I disclosed these �ndings to bit.ly but did not receive a response.

5.8.4 Emerging Evasion Techniques

As shown in Table 5.4, none of the batches of sophisticated cloaking techniques within

Experiment F saw any blacklisting, with the exception of one batch with CAPTCHA cloak-
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Figure 5.8: Comparison of traditional URL-only reporting with evidence-based reporting

in Google Chrome.

ing, which had 42.6% coverage in SmartScreen only. Upon further investigation, I discov-

ered that SmartScreen’s detection occurred due to its classi�cation of obfuscation within

the CAPTCHA JavaScript code as malware. Because such detection can trivially be by-

passed [139], I believe that behavior-based evasion techniques represent a threat to the

anti-phishing ecosystem.

A fundamental distinction between the cloaking techniques in this experiment and

the other experiments is that they require interaction from a human user to trigger the

display of phishing content (i.e., clicking on a bu�on, solving a CAPTCHA challenge, or

moving the mouse). Such behaviors might be typical of a human user (and may not even

raise suspicion if the user is successfully fooled by an e-mail lure, or if the landing page

matches the look-and-feel of the impersonated organization). However, web crawlers

would need to be specially developed to emulate such behaviors or otherwise �ngerprint

such cloaking.
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5.8.5 Single-entity Reporting

In Experiment E, I observed clear di�erences in blacklist response when comparing re-

porting to the APWG (only) with reporting to PayPal (only), as shown in Table 5.4. Even

if I exclude the problematic performance of PayPal during Deployment 3 (as discussed

in Section 5.8.2), reporting to the APWG resulted in higher coverage across all blacklists

and greater crawler tra�c to each website. However, the speed of GSB blacklisting a�er

reporting to PayPal was 01:31 faster than that of the APWG. �is suggests that between

entities, there exist di�erent implementations for propagating reported URLs to black-

lists. Due to each entity’s unique strengths, I believe it is important to report phishing to

multiple entities.

5.8.6 Evidence-based Reporting

In Figure 5.8 and Table 5.4, I compare the di�erence in GSB speed and coverage be-

tween traditional URL reporting and evidence-based reporting through CSSR [23] (note

that I limit the x-axis as coverage did not increase a�er 24 hours), as measured in Experi-

ment G.

I observe that the two reporting approaches each resulted in a distinct crawler re-

sponse and subsequent blacklist performance. Traditional URL reporting was followed

by an immediate burst of crawler tra�c and a negligible amount of crawler tra�c in the

hours therea�er. Even though 50% of the phishing websites I reported were successfully

retrieved by a crawler, only 20.4% were ultimately blacklisted. �e earliest blacklisting

occurred 20 minutes a�er reporting, and coverage stopped growing a�er approximately

4 hours. Reporting through CSSR yielded a slower initial speed, but resulted not only in

90.7% coverage within 24 hours, but also a substantially higher amount of crawler tra�c,

spread over a long period of time, with 47.5% fewer requests being denied by cloaking.
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�e earliest blacklisting occurred 50 minutes a�er reporting, and coverage matched that

of the traditional reporting approach by the 4-hour mark.

Figure 5.9: Cumulative Distribution Function (CDF) plot of tra�c to my phishing websites.

5.9 Crawler Tra�c

Between May 2019 and January 2020, the 4,158 URLs that were part of my main de-

ployments received a total of 2.14 million HTTP requests from 41,750 distinct web crawler

IP addresses. An additional 20.50 million requests were made from my monitoring infras-

tructure to check the blacklist status of my websites. My websites remained online for the

duration of the deployments (i.e., were not subjected to take-down [1]) as I had made my

hosting provider aware of the nature of my research.

55.27% of the crawler requests were successful and returned an HTTP 200 status code

(302 for redirection links). �e remaining requests returned an HTTP 404 status code:

7.56% were denied by a cloaking technique, and 37.18% simply tried to fetch nonexistent

URLs. �e majority of the nonexistent URLs represented crawler e�orts to scan for phish-

ing kit archives or credential dump �les, which is a common way not only to �ngerprint
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phishing websites, but also to identify stolen credentials which may linger on the same

server as the phishing kit [22].

In Figure 5.9, I show the Cumulative Distribution Function (CDF) of crawler tra�c to

my websites. I observe that a�er an initial burst within the �rst day of deployment, suc-

cessful tra�c remains fairly consistent for the remainder of the deployment. �is tra�c

accounts for crawlers which continuously monitor the presence of the phishing website.

�e relative proportion of requests which are denied through cloaking drops over

time. �e increased e�ort early on allows crawlers to �ngerprint evasion techniques such

that future requests are more likely to be successful. I believe that this behavior in part

helped blacklists deliver the high coverage that I observed, even for websites with more

sophisticated cloaking techniques as in Experiment C.

5.10 Discussion

Although blacklists are capable of detecting the typical evasion techniques which I

tested—including cloaked redirection—the PhishTime experiments showed that these tech-

niques generally both slow speed and reduce coverage. Moreover, in the wild, a�ackers

use redirection chains far more complex than those I tested. �erefore, in practice, cov-

erage of phishing websites hidden behind redirection may be worse than what was ob-

served in my experiments. Other notable gaps in coverage also remain, particularly on

mobile devices. Given a�ackers’ ability to adapt to the ecosystem by leveraging innova-

tive evasion strategies, such as those in Experiment F, I believe that evasion remains a key

anti-phishing concern.

Defensive Strategy. To the best of my knowledge, longitudinal measurements of

anti-phishing defenses are not currently being performed at the ecosystem level. �e

PhishTime framework, combined with deployments of targeted experiments, can be used

as a defensive strategy to identify gaps in defenses and help address them through security
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recommendations. Although my work focuses on browser blacklists, the scope of future

experiments could be shi�ed to evaluate other mitigations (e.g., spam �lters). Moreover,

the ecosystem analysis could be aimed at areas other than evasion techniques, such as

identifying a�acker-friendly web hosts or compromised domains [1].

Depending on the objective of the entity carrying out the experiments, PhishTime can

be used to assess aspects of the ecosystem as a whole, or the behavior of a speci�c entity or

mitigation. I believe this is a crucial �rst step toward achieving consistency in—and per-

haps accountability for—anti-phishing and account protection [125] e�orts of the many

di�erent organizations that phishers impersonate. I have proposed this approach to the

APWG; subsequently, e�orts are underway to incorporate PhishTime as an ecosystem-

level service which can be used to monitor URLs reported to the APWG eCrime exchange

and drive future experiments based on this dataset.

Reporting Protocols. Given the prevalence of evasive phishing in the wild, and the

promising performance of CSSR, I believe that the adoption and expansion of evidence-

based reporting protocols should be a priority for the ecosystem. In addition to supporting

manual reporting by humans, such protocols should be made available to ve�ed auto-

mated anti-phishing systems. A key bene�t of such an integration would be that if one

entity detects an evasive phishing website, it can share the parameters used for detection

to help other entities (e.g., blacklists) avoid duplication of e�ort while improving mitiga-

tion (e.g., speed and coverage). Moreover, such evidence can be used to support take-down

e�orts [1] or law enforcement intervention if an initial mitigation, such as blacklisting,

proves insu�cient.

Beyond the expansion of enhanced reporting protocols, I believe that standardized

methods for reporting phishing across the ecosystem—rather than to individual entities—

would help improve the ecosystem’s collective response. As I observed from Experiment

E, each anti-phishing entity functions di�erently and, thus, a�ects blacklisting di�erently.
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Additionally, the drop in coverage I observed during Deployment 3 suggests that the

ecosystem may in some cases be fragile. If a single anti-phishing entity contributes dis-

proportionately to the mitigation of a particular type of threat, it can become a chokepoint,

which, in case of a temporary failure or degradation, could represent an opportunity for

phishers to launch a burst of successful a�acks.

Mobile Blacklists. Mobile users account for a majority of Internet tra�c [120], and

prior research has shown that mobile web browsers are particularly prone to phishing

a�acks [73]. Yet, my �ndings indicate that the anti-phishing protection in mobile web

browsers continues to trail behind that of desktop browsers. �e bandwidth used by mo-

bile devices—which may be subject to mobile carrier restrictions—was historically a bar-

rier to desktop-level GSB protection in mobile Chrome and Safari [101]. However, over a

Wi-Fi connection (which I used for monitoring), the full blacklist should be checked.

My experiments were unable to determine exactly how blacklists determine if a URL

blacklisted in desktop browsers should also be blacklisted in the corresponding mobile

browser. However, I did observe that my websites which were deliberately con�gured to

only be accessible in mobile browsers (i.e., Experiment B) were in fact never blacklisted in

these browsers. I, therefore, believe that mobile blacklisting represents a key vulnerability

within the ecosystem and that this blacklisting should be made consistent to be�er protect

mobile users targeted by phishers.

Certi�cate Revocation. �roughout my deployments, I monitored the OSCP revo-

cation status [93] of my domains’ SSL certi�cates, which I automatically obtained from

Let’s Encrypt (a free Certi�cate Authority with the highest representation among phish-

ing websites in the wild [31]). None of the certi�cates were revoked. In addition, I found

that certi�cates could also be issued for domains that were already blacklisted, as Let’s

Encrypt had discontinued checking of domains in new certi�cate requests against GSB

in early 2019 [69]. Although the role of Certi�cate Authorities as a mitigation against
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phishing is subject to debate [31], I believe that the ease at which a�ackers can obtain

certi�cates represents a noteworthy security consideration.

Ecosystem Changes. A notable ecosystem development took place in December

2019: in Chrome 79, Google improved the speed of GSB by “up to 30 minutes” [45] by in-

corporating real-time lookups of phishing URLs for users of Chrome’s password manager.

Although not yet enabled by default, this change acknowledges, and seeks to address, the

delay to blacklisting speed possible in the default implementation of GSB, which caches

and periodically updates a local copy of the URL blacklist. Due to the timing of the release

of this feature, I was not able to evaluate it in my experiments.

5.11 Ethical Concerns

I sought to address a number of potential ethical concerns while conducting this re-

search.

Disclosures. Beyond the disclosures discussed throughout Section 5.8, upon the com-

pletion of my �nal deployment, I sent a report with my �ndings to PayPal, Google, Mi-

croso�, Apple, and Opera, with a particular focus on the emerging evasion techniques

that I identi�ed, as well as gaps within blacklisting on mobile devices. Google followed

up for details on the JavaScript cloaking, and acknowledged the gap in mobile blacklist-

ing, which it is actively working to address. Opera requested a teleconference, and, as a

result, will work with the APWG to enhance the data sources used by its anti-phishing

blacklist.

Risk to Human Users. To ensure that my phishing websites could not harm any

potential human visitors, I only distributed their URLs directly to anti-phishing entities,

and the URLs had randomized paths that were infeasible to guess. In the event of form

submission, my websites performed no backend processing or logging of POST data; the

use of HTTPS ensured that data would not leak in transit.
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Infrastructure Usage. I followed the terms of service of all services and APIs used for

this research, and I obtained permission from Google to report URLs programmatically to

Google Safe Browsing. I informed my hosting provider (Digital Ocean) about my research

and obtained permission to leverage server infrastructure accordingly.

Adverse Side-e�ects. Despite my relatively large sample size for each deployment, I

do not believe that the volume of URLs I reported hampered the anti-phishing ecosystem’s

ability to mitigate real threats. Based on the overall phishing volume per the GSB Trans-

parency Report [47], each of my deployments accounted for less than 1% of all phishing

detections made during the same period. I informed PayPal of my experiments to en-

sure that resources were not wasted on manually investigating my phishing URLs. I also

obtained permission to use the PayPal brand and promptly disclosed the ecosystem vul-

nerabilities I discovered.

5.12 Limitations

My experimental �ndings should be considered alongside certain limitations. To elim-

inate confounding factors, I did not modify the appearance of my phishing websites be-

tween deployments, and they impersonated just a single brand (PayPal). �us, my �ndings

may be skewed by detection trends speci�c to this brand [106] and possible �ngerprinting

of the websites’ source code. Also, my use of randomized URLs for each website may have

reduced the likelihood that they would be detected. However, I believe that my approach

is still realistic given a�ackers’ re-use of phishing kits and frequent use of randomized

URLs in the wild [102].

Each phishing URL I deployed (with the exception of bit.ly links) had a unique .com

domain name that had not previously been reported to a blacklist. However, it was not

feasible to achieve a one-to-one mapping between these domains and the pool of IP ad-

dresses available from my hosting provider. To mitigate the potential skew from IP reuse,
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I distributed IP mappings as uniformly as possible within each batch of websites. I ulti-

mately did not observe that URLs on certain IP addresses were more likely to be blacklisted

than others.

When reporting my phishing websites, my goal was to guarantee timely discovery by

the blacklists I was evaluating. Given the fast speed and near-perfect coverage I consis-

tently observed in Experiment A, I believe that I succeeded in this goal, and thus addressed

a key limitation of the original PhishFarm study [101]. Nevertheless, unlike real phishers, I

did not spam real users, and I only sent reports when I initially deployed each URL. �us,

my reporting methodology may not fully re�ect continuous indicators of abuse which

might be observable in the wild; it may also be skewed in favor of GSB: the only blacklist

to which I was able to report directly.

Finally, the scope of my experiments was limited to a subset of the di�erent phishing

website con�gurations that could be used by a�ackers. Future deployments can naturally

be adapted to test other con�gurations which I did not consider or which might appear in

the future. Although the PhishTime framework itself may fail to identify certain a�acks

that entirely avoid discovery, the use of additional sources of phishing URLs could address

this shortcoming.

In certain experimental batches, none of the URLs ended up being blacklisted. It may,

therefore, be more economical and more practical to use a smaller number of domains to

test di�erent phishing website con�gurations, and only increase the batch size if further

scrutiny is warranted.

5.13 Related Work

To the best of my knowledge, the work in this chapter is the �rst controlled longitu-

dinal empirical study of the performance of browser blacklists, and the �rst to propose

strategies for the long-term measurement and enhancement of the protection o�ered by
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the anti-phishing ecosystem. Although other controlled studies (e.g., which deploy new,

innocuous phishing websites) have previously been done, they focused on speci�c anti-

phishing entities and were performed over a short period.

In the PhishFarm experiments in Chapter 4, I deployed �ve series of 396 innocuous

phishing websites, all within two weeks, to measure the e�ectiveness of cloaking against

browser blacklists [101]. �e methodology used in the PhishFarm study may seem similar

to that of PhishTime, but the objectives of the two studies di�er considerably. �e former

measured the propagation of blacklist coverage a�er reporting to a single anti-phishing

entity, and, thus, showed that speci�c entities are vulnerable to cloaking techniques. In

contrast, the longitudinal PhishTime experiments precisely measured blacklist speed and

coverage for the ecosystem as a whole by simultaneously reporting to multiple entities

across multiple deployments. �ese experiments not only showed that evasion poses a

serious threat to blacklisting e�cacy, but also delivered realistic long-term measurements

of blacklist performance to drive speci�c security recommendations.

Moreover, the updated experimental design used by PhishTime more accurately rep-

resents the anti-phishing ecosystem by addressing the limitations of the PhishFarm exper-

iments: I closely emulate the con�guration of phishing websites found in the wild (e.g.,

by testing combinations of evasion techniques and con�guring websites with HTTPS),

leverage programmatic monitoring and reporting channels commonly used by automated

anti-phishing systems, and analyze the persistence of blacklisting.

Peng et al. [106] followed a comparable strategy to deploy phishing websites and in-

vestigate how well VirusTotal and its sub-vendors are able to detect phishing content.

�is study entailed a relatively small sample size of 66 websites and consisted of a single

deployment over four weeks. �e study sheds light on detection models used by speci�c

anti-phishing vendors, and performed tra�c analysis similar to PhishFarm, but did not

assess blacklist speed.
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Other work has indirectly measured or estimated the performance of blacklists. Han

et al. [51] monitored a honeypot server on which a�ackers installed phishing kits. In

addition to measuring the ecosystem’s response, the authors also monitored a�ackers’

and victims’ interactions with the kits, which provided unique insight into the execution

of phishing a�acks. However, because this approach hinges on a�acker interactions with

the honeypot, it is di�cult to control variables such as the deployment time of each a�ack,

the sample size, or the website con�guration. In turn, the observations may not accurately

re�ect a�acks within the broader ecosystem.

In Chapter 6, I analyze a large sample of phishing tra�c to live phishing websites

trackable through third-party web requests [103]. With this methodology, I estimate the

average e�ect of blacklisting across the entire dataset; however, the study does not focus

on evaluating the consistency of blacklists over time and thus serves as a supplement to

the PhishTime �ndings.

Earlier studies empirically measured the blacklisting of phishing websites a�er their

appearance in various feeds [72, 99, 114, 131]. Because feeds are subject to an inherent

delay, the resulting measurements of blacklist speed are imprecise. However, they do

provide insight into the coverage of blacklists across di�erent platforms and the manner

in which blacklists detect phishing, which inspired the general design of the PhishTime

framework.

5.14 Summary

In this chapter, I have proposed methodology for systematically evaluating the protec-

tion provided by the anti-phishing ecosystem in the long term, with a focus on browser

blacklists and phishing reporting protocols. By identifying sophisticated evasion tech-

niques used by phishing websites in the wild and by replicating them in a controlled

se�ing, I was able to pinpoint and help address the gaps that a�ackers exploit in exist-
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ing defenses. With a high degree of automation, my approach provides the �exibility to

deploy empirical experiments that not only realistically replicate current a�acks, but can

also be used to proactively test emerging threats or new mitigations.

�rough analysis conducted over the course of one year, I have shown that amid a

record volume of phishing a�acks [47], modern blacklists are o�en capable of responding

quickly to phishing websites. However, mobile browsers—which now account for a ma-

jority of Internet tra�c—continue to receive limited blacklist protection. Also, blacklist

speed and coverage both decrease considerably against evasive phishing websites com-

monly found in the wild. Evidence-based reporting protocols, which include data beyond

a mere URL, can be an e�ective counter to such evasion.

Beyond making ecosystem-wide �ndings, the PhishTime approach can bene�t the or-

ganizations that phishers impersonate. Experiments that focus on a speci�c brand can

help measure how e�ectively the ecosystem can protect that brand’s customers, and how

well the brand implements its own anti-phishing mitigations. Given the evolution of both

phishing a�acks and corresponding defenses, I believe that longitudinal measurements of

the ecosystem are essential for maintaining an understanding of the ecosystem’s protec-

tion and evaluating new security features as they are released, such that the security of

users can be continuously ensured.

In the next chapter, to show the extent to which delays in blacklisting (such as those

measured by PhishTime) can impact potential victims, I apply novel methodology to pre-

cisely study the collective anatomy and e�ectiveness of real, large-scale phishing a�acks.

�is study will not only revisit blacklist measurements from a di�erent perspective but

also provide deeper insight into the nature of sophisticated phishing a�acks.

139



Chapter 6

GOLDEN HOUR: ANALYZING THE END-TO-END LIFE CYCLE AND EFFECTIVENESS

OF PHISHING ATTACKS AT SCALE

6.1 Introduction

Prior research has shown that traditional phishing lures, such as e-mails, have a low

click-through rate (5-8%) [116] and that the likelihood that targeted users will hand over

credentials to a�ackers is similarly low (9%) [51]. Yet, the volume of phishing a�acks

observed in the wild shows no signs of subsiding [5, 6]; moreover, social engineering

techniques such as phishing play a central role in enabling even more harmful scams [39].

In a cat-and-mouse game, phishers collectively seek to stay one step ahead of the

security community through an extensive toolkit of evasion techniques and innovations

in their a�acks [102], which are fueled by an underground economy [118]. In Chapters 4

and 5, I have shown that a�ackers’ evasion techniques are capable of signi�cantly delaying

the mitigations provided by browser blacklists—a ubiquitous gatekeeper between victims

and a�ackers [101]. However, the implications of such delays on the success of each

a�ack are not yet well-understood, nor is the precise window of opportunity available

to a�ackers between the launch and mitigation of their phishing websites. Actionable

insight into successful phishing campaigns, victims, and the impact of interventions is

therefore rare.

�e challenges in measuring phishing a�acks at the ecosystem level—due to the diver-

sity of infrastructure and victims involved, and the proprietary (let alone sensitive) nature

of much of the associated data—have historically accounted for this lack of insight [75, 90].
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Yet, such measurements are essential to improving existing anti-phishing mitigations and

developing new ones [130].

In this chapter, I present a longitudinal, end-to-end analysis of the progression of mod-

ern phishing a�acks, from the time of deployment to the time of victim credential com-

promise. I observe that, despite their desire to remain evasive, a substantial proportion of

phishing websites in the wild bene�t from making requests for web resources (e.g., im-

ages or scripts) hosted by—and thus trackable by—third parties, such as the organizations

being impersonated by these websites. Using this observation, I collaborate with one of

the most-targeted brands in the current ecosystem [127] to develop and deploy a re-usable

framework to meaningfully analyze victim tra�c to live phishing websites.

From 404,628 distinct phishing URLs in the tra�c dataset, I gain an understanding of

the aggregate volume and timing of key events within the life cycle of phishing a�acks.

Next, I correlate the tra�c with the original phishing e-mail lures to map the distribu-

tion phase of the a�acks. Finally, I investigate the timing and success rates of a�ack-

ers’ monetization e�orts based on the subsequent account compromise and fraudulent

transactions—of the same victims—at a major �nancial services provider. I show that the

data sampled by the approach provides visibility into 39.1% of all known phishing host-

names which targeted the same brand during the observation period.

I measure that the average phishing a�ack spans approximately 21 hours between the

�rst and last victim visit, and that the detection of each a�ack by anti-phishing entities

occurs an average of nearly nine hours a�er the �rst victim visit. Once a phishing a�ack is

detected, a further seven hours elapse prior to peak mitigation by blacklists. �is gap con-

stitutes the “golden hours” which currently give a�ackers the opportunity to enjoy a high

return-on-investment from their a�acks, but which could be prevented by the ecosystem.

Alarmingly, 37.73% of all victim tra�c within the dataset took place a�er a�ack detection,

and at least 7.42% of all targeted victims su�er subsequent fraud.
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Moreover, my approach can identify the characteristics of particularly successful phish-

ing a�acks. I found that the top 10% largest a�acks in the dataset accounted for 89.13% of

targeted victims and that these a�acks proved capable of e�ectively defeating the ecosys-

tem’s mitigations in the long term. Phishing campaigns would remain online for as long

as nine months while tricking tens of thousands of victims in the process—using nothing

more than sophisticated phishing kits on a single compromised domain name. As a result,

I propose a practical methodology to proactively mitigate these a�acks, and I deploy my

approach to secure the a�ected victims’ accounts.

My work motivates the expansion of collaborative, defense-in-depth anti-phishing ap-

proaches as a means to cope with phishers’ evasion techniques and increasing sophis-

tication. It underscores the importance of not only making improvements to existing

ecosystem defenses such as browser blacklists, but also more widely adopting proactive

mitigations. �e contributions of this chapter are as follows:

• A longitudinal measurement study of the end-to-end life cycle of real phishing at-

tacks representative of the modern anti-phishing ecosystem.

• A framework for the proactive detection and mitigation of phishing websites that

embed external resources.

• Security recommendations to address the limitations within the current anti-phishing

ecosystem based on an analysis of highly successful phishing a�acks.

6.2 Background

As discussed in the previous chapter, the longer that phishing websites remain on-

line and are accessible to victims, the more a�ackers stand to pro�t. �erefore, modern

phishing websites seek to maximize their own longevity through a variety of strategies

to remain stealthy [101].
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6.2.1 Measuring the Impact of Phishing

Meaningfully assessing long-term trends in the volume of phishing a�acks has his-

torically proved to be challenging due to a lack of transparency and consistency in the

methodology applied [90]. Data sources that could be e�ectively used for such measure-

ments are spread throughout the ecosystem and typically held closely by their owners.

Other data, such as phishing URLs, is more readily available and suitable for classi�cation

or �ngerprinting purposes, but not directly coupled with a�ack volume or impact [24].

Since 2004, the Anti-Phishing Working Group (APWG)—an industry-wide consortium

of key anti-phishing entities—has regularly published summary reports of monthly phish-

ing volume and ecosystem a�ack trends based on diverse partner data [6]. Although these

reports have provided phishing volume �gures for over a decade, changes in methodol-

ogy and data sources over time prevent longitudinal analysis and only enable conclusions

such as that “phishing continues on a large scale”. Research with deeper insight into the

progression of phishing a�acks has thus far been limited to smaller datasets or isolated

scope [51, 92].

Obtaining data relating to the damage caused by phishing a�acks (i.e., as a result of ac-

count compromise or credential the�) at speci�c organizations is even more challenging

due to its sensitive nature in terms of both individual victims’ and businesses’ con�dential-

ity. Additionally, victims themselves have shown a tendency to under-report cybercrime

to authorities [37]. Aggregate summaries of such damage are thus o�en extrapolations

based on certain assumptions [81].

6.3 Methodology

In this section, I discuss my approach to measuring the end-to-end life cycle of phish-

ing websites, from the time of con�guration (B in Figure 6.1) to the time the a�ack goes
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Figure 6.1: Sequence of the high-level stages of a typical phishing a�ack.

o�ine (G). Using the approach, in Section 6.5, I present to be what I believe the �rst me-

thodical correlation of phishing a�ack volume with its e�cacy, which includes analysis

of monetization e�orts (F ). My analysis carefully dissects phishing a�acks and, conse-

quently, leads to security recommendations for existing ecosystem defenses and moti-

vates the adoption of additional proactive anti-phishing measures. Note that malicious

infrastructure con�guration (A) is outside of the scope of the work in this chapter, as I

focus purely on phishing a�acks themselves [11, 14].

6.3.1 Phishing A�ack Stages

For users to be e�ectively protected against phishing, malicious websites must be miti-

gated in a timely manner such that each phishing a�ack is disrupted at the earliest possible

stage, and, ideally, never shown to the user. I show an overview of the stages of a typical

phishing a�ack in Figure 6.1, with a focus on the sequence of the stages.

A�ackers �rst obtain infrastructure (A) and con�gure a phishing website on this in-

frastructure (B), o�en by installing a phishing kit. Once the website is operational, a�ack-

ers begin distributing it to their victims (C) and victims start accessing it (D), as previously

discussed in Chapter 2. A�er this point, the remaining stages are not necessarily consec-

utive.
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Once detected by anti-phishing infrastructure, the a�ack will be mitigated by the

ecosystem’s defenses (E). In an optimal scenario, this mitigation would occur before time

D and would prevent all future victim tra�c. If these conditions are not satis�ed, victim

visits may continue for an extended period, and a�ackers will proceed to monetize the

data stolen by the phishing website through various means (F ) [126], which could entail

testing stolen credentials against the corresponding platforms, or submi�ing fraudulent

transactions using stolen �nancials [35, 134]. �e original phishing website will even-

tually go o�ine, either as a result of take-down e�orts [1] or deliberately by a�ackers

(G).

6.3.2 Observations

As a preliminary step in my study, in June 2018, I manually inspected a sample of

live phishing websites shortly a�er their URLs were submi�ed to PhishTank [107], Open-

Phish [104], or the APWG eCrime Exchange [6] (large clearinghouses of phishing URLs).

I made two key observations: �rst, that phishing websites routinely embed resources (e.g.,

images, fonts, or JavaScript) hosted on third-party domains, including domains which be-

long to the organizations being impersonated; and second, that some phishing websites

redirect the victim back to the organization’s legitimate website a�er the victim submits

his or her information.

It thus follows that third parties—including the organizations being targeted and im-

personated by phishers—could, with the right methodology, directly track visitor activity

on certain phishing websites by inspecting HTTP/HTTPS requests for the aforementioned

web resources within their own systems, and by identifying referrals [40] from suspicious

sources. Such tracking could capture not only victim interaction with the phishing web-

sites, but also visits from a�ackers themselves as they con�gure and test their a�acks.
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Figure 6.2: Golden Hour framework design.

Moreover, the data could be used to proactively identify phishing URLs and propagate

them through the anti-phishing ecosystem. Correlating the data with victim information

(e.g., if a visitor’s request for a resource on a phishing website has the same session identi-

�er as a prior visit to the organization’s legitimate website [15]) could help organizations

be�er mitigate a�acks by securing any accounts tied to the victims, while simultaneously

measuring the e�ective damage likely caused by phishing. Lastly, correlating URLs in

phishing lures (e.g., e-mail messages) with victim tra�c to phishing websites can paint a

clear picture of the distribution phase of phishing a�acks.

Recent work used a similar approach to identify the characteristics of successful e-

mail lures and discover the corresponding URLs [130]. My analysis of web event data

instead focuses on mapping the overall progression of phishing a�acks: consequently, I

correlate the timing of key events within phishing a�acks to a deeper extent, and on a

larger scale, than previous studies [51, 92]. I also consider the success of phishing a�acks,

and I directly leverage the web event data as an anti-phishing mitigation.

6.3.3 Data Analysis Framework

�e aforementioned analysis necessitates access to data only available to speci�c or-

ganizations (i.e., those commonly targeted by phishers or engaged in anti-phishing). I

collaborated with one such organization—a major �nancial services provider—to develop

and deploy a generic framework for processing the relevant data. �e Golden Hour frame-
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work, shown in Figure 6.2, extracts web tracking events associated with phishing websites

for analytical purposes or as a real-time proactive mitigation.

My framework is brand-agnostic and could thus realistically be adapted for use by a

broad range of organizations that have access to the appropriate data. I start by providing

an abstract overview of the framework and then discuss the deployment in Section 6.4.1.

In Section 6.5, I show that the framework enables insight into phishing a�acks during

their early golden hours, and that it can e�ectively disrupt a�acks during or prior to this

period.

In the Golden Hour framework, I �rst ingest web events of interest ( 1 ), which can

be obtained from raw web tra�c logs (i.e., requests for images or style elements) or pre-

processed data from web trackers or JavaScript web application code. I annotate each

ingested event with a timestamp and extract further a�ributes, such as the IP address,

user agent, session identi�ers (i.e., from prior requests), referring URL, and the main page

URL which was visited. I then take the la�er two URL a�ributes and apply whitelist

�ltering ( 2 ) to eliminate benign events which would normally be expected to be seen

in this context, such as requests to the organization’s legitimate website or requests with

referrers on approved partner websites. �erea�er, I correlate (by substring matching) the

URLs of the remaining events with a recent list of known phishing URLs from additional

data sources ( 3 ); this correlation enables the discovery of new phishing URLs which

might only share a similar hostname or path with a previously-reported URL, but di�er

otherwise. It is also possible to apply phishing URL classi�cation heuristics to identify

previously-unknown URLs of interest [41].

�e event correlation can take place in an online manner, or be deferred, in which case

events are archived for later analysis ( 4 ). In both cases, to allow for scalability, a chosen

observation window de�nes a range of time (i.e., before and a�er a URL is reported) within

which correlations for a given phishing URL are made. Successive reports of the same URL
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Date Range No. of Samples

Golden Hour web events 10/01/18 - 09/30/19 22,553,707

(distinct phishing URLs) 404,628

E-mail reports 09/01/19 - 09/30/19 68,502

APWG phishing URLs 10/01/18 - 09/30/19 52,116

Organization’s phishing URLs 10/01/18 - 09/30/19 37,438

Fraudulent account transactions 10/01/18 - 09/30/19 Not disclosed

Compromised user accounts

Table 6.1: Overview of the datasets analyzed.

naturally extend the observation window; otherwise, correlations against unnecessary

data can be avoided.

Events that are identi�ed as phishing are additionally marked for immediate miti-

gation. Over time, I further re�ne the archived events ( 5 ) by identifying false positive

correlations, noise from automated (i.e., web crawler) tra�c, and phishing URLs detected

at a later point in time, with the use of statistical analysis and external data sources ( 6 ).

To bene�t from my framework’s mitigation capabilities, it should ideally be deployed

online, on a stream of live (or recent) data during the ingestion stage ( 1 ). However, the

framework can also process archived (i.e., historical) event data alone. In the long term, as

the anti-phishing ecosystem builds ground truth (i.e., by having access to a ve�ed list of

known phishing URLs), both approaches will enable the same level of analytical insight.

�us, the framework can accommodate di�erent data ingestion strategies to support the

infrastructure of the organization deploying it.
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6.4 Dataset Overview

I deployed theGolden Hour framework to collect and analyze one year of phishing web

tra�c data between October 1, 2018, and September 30, 2019 (inclusive), at the same orga-

nization mentioned in the previous section—a major �nancial services provider and one

of the most-targeted brands within the current ecosystem [26, 86]. I provide an overview

of the scope of all of my datasets in Table 6.1. Note that this data was collected ethically

and in compliance with user privacy laws within the originally-intended context (see Sec-

tion 6.8.3).

6.4.1 Data Collection

I operated the Golden Hour framework in an online manner from July 1, 2019, through

September 30, 2019, and additionally processed archived data from the preceding nine

months. To e�ciently query a data warehouse, I limited my observation window for web

event data (as discussed in Section 6.3.3) to one week before and one week a�er the cor-

responding hostname appeared in a phishing feed. I found that this approach did not lead

to the omission of any relevant events, as phishing URLs which remained live for longer

periods would reappear in the feeds at a later date, and would thus also be extracted by

my framework for analysis.

�e resulting dataset initially contained a total of 22,553,707 web events representative

of tra�c to phishing websites from victims, a�ackers, and security crawlers alike. Using

the tra�c data, it is possible to gain detailed insight into stages B, D, E, and G within the

life cycle of phishing a�acks. For the framework’s correlation ( 3 ) and re�nement ( 5 )

steps, I programmatically queried additional data sources: phishing URLs for the same

brand in the APWG eCrime Exchange feed, the organization’s proprietary phishing URL
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feed, and the organization’s proprietary automated (i.e., crawler) tra�c detection system

( 6 ).

During my deployment, I pruned 3,194,031 events by identifying tra�c to legitimate

websites (based on a whitelist and manual review) and false-positive URLs that were

under-represented in the phishing feeds or �agged as such by the organization. �us,

my �nal dataset contained 19,359,676 total events. �ese events corresponded to 404,628

distinct phishing URLs—more than either phishing feed I considered, as my hostname

correlation process enables the identi�cation of unreported variants of URLs similar to

those which appeared in feeds. However, additional types of data are required to obtain

timings of a�ack distribution (stage C) and monetization (stage F ) and thus complete my

end-to-end analysis, as these are not captured by the tra�c dataset alone.

Phishing URL Distribution: To measure URL distribution to victims, I extracted

metadata from phishing e-mails that users forwarded (i.e., as spam reports) to the organi-

zation. �e timestamps within the original e-mail lures allow us to calculate when phish-

ers originally distributed their a�acks. To correlate these timestamps with web events in

my tra�c dataset, I extracted URLs from each e-mail and followed redirects (if any) to

obtain the URL of the �nal phishing landing page. In cases when a redirect was followed,

or if the phishing URL was no longer accessible, I would additionally query the organi-

zation’s internal anti-phishing system to obtain any other landing page URLs known to

be previously associated with the URL in the e-mail. To complete the correlation, I search

for events within the tra�c dataset with the same hostname and a common path.

I was able to correlate 21,244 e-mail reports with phishing URLs in my event dataset1. I

found that 84.44% of these e-mails contained a timestamp detailed enough (i.e., date, time,

and timezone) for my analysis. Determining �nal landing page URLs from links within
1�e uncorrelated e-mails either were outside of the visibility of my approach, or had redirection chains

that could not be reconstructed. I discuss the relatively small size of my e-mail dataset in Section 6.9.
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Figure 6.3: Visibility of phishing websites in the Golden Hour dataset.

the e-mail proved integral, as only 3.99% of e-mails contained the same URL as the �nal

phishing page (i.e., others made use of redirection).

Account Compromise and Monetization: To understand one way in which crimi-

nals exploit credentials from phishing victims, I analyzed session identi�ers programmat-

ically extracted from events in the tra�c dataset (i.e., victim visits to a phishing website

which had cookies from a prior interaction with the legitimate organization’s website).

�e organization then mapped these identi�ers to user accounts and provided timestamps

of fraudulent transactions associated with these accounts, and timestamps of when corre-

sponding credentials appeared in a public dump. I could then correlate these timestamps

with the victims’ original interaction with the phishing page per the tra�c dataset.

Due to the sensitive nature of user information, I present my �ndings related to this

data in aggregate form only (in Section 6.5). Note that no Personally Identi�able Informa-

tion (PII) was given to me for the purposes of this analysis.
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6.4.2 Level of Visibility

An immediate question that arises about my analysis concerns the level of visibility

than can be achieved by the Golden Hour framework. I de�ne visibility as the proportion

of the total population of phishing websites which can be analyzed through my approach.

While I cannot provide a de�nite visibility measurement, as this would require knowl-

edge of all phishing campaigns that target the organization, I estimate the visibility of my

dataset by dividing the number of distinct hostnames with at least one associated web

event by the total number of phishing hostnames, for the same brand, known from other

data sources during the data collection period (i.e., the URLs reported to the APWG or

found in the organization’s phishing URL feed). I also calculate the same ratio for full

URLs. Note that it is easier for phishers to create multiple paths on a single domain com-

pared to multiple subdomains; thus, the hostname ratio be�er represents unique a�acks.

I found that my approach had visibility into an average of 39.1% of all hostnames and

40.9% of all URLs which were found in the aforementioned feeds (and, thus, targeted the

organization) during the data collection period. I present the visibility ratios by month in

Figure 6.3.

Given the evasiveness of modern phishing a�acks, I suspect that the phishing URL

feeds underestimate the population of all phishing URLs found in the wild [102, 125].

Consequently, however, the same would apply to the set of URLs for which I collected

event data through Golden Hour. �erefore, I believe that my assessment of visibility is

realistic.

�e degree of visibility for both hostnames and URLs remained fairly consistent through-

out the data collection period, with the exception of July 2019. During this month, I ob-

served a spike to 50.2% and 57.1% visibility, respectively, which coincided with the launch
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Figure 6.4: Distribution of Golden Hour web events by month.

of numerous sophisticated, large-scale a�acks that were detectable by my approach. I

discuss these a�acks in more detail in Section 6.7.

Per the APWG eCrime Exchange, the brand in my dataset accounted for 10.6% of all

phishing hostnames (with known brands) during the same period. �is allows extrapola-

tion of the possible visibility of my approach into the population of phishing websites.

6.4.3 Event Distribution

I collected web events of two broad types: visits that occurred directly on phishing

websites (Page URLs) and referral tra�c from a phishing website back to the organization’s

legitimate website (Referring URLs). I show the monthly distribution of these events in my

dataset in Figure 6.4. I observe that phishing a�acks are not uniformly distributed; some

months see substantially more tra�c than others. Historically, phishing a�acks have been

associated with a certain seasonality, particularly near holidays. �e spike in the �nal

three months of my dataset is consistent with the Q3 2019 APWG report, which found

this period to have the largest volume of phishing URLs in three years [7]. However, I
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Known Visitor Crawler Other Total

Page URL 2,968,735 2,934,976 7,982,475
13,886,186

(71.73%)

Referring URL 1,879,179 820,716 2,773,595
5,473,490

(28.27%)

Total
4,847,914

(25.04%)

3,755,692

(19.40%)

10,765,070

(55.56%)
19,359,676

Table 6.2: Breakdown of Golden Hour web events by type.

expose a limitation of counting URLs alone as a measurement of overall phishing volume,

as the spike in my tra�c dataset is far more dramatic than the change in total URLs2.

In Table 6.2, I further subdivide the events by the type of user. Events from Known

Visitors are those which contain a session or device identi�er that was previously known

to the organization, and can thus be linked with certainty to a known account at the

organization. Crawler events are those which I or the organization classi�ed as automated

tra�c based on request a�ributes. �e Other events fall into neither category but follow a

similar distribution to Known Visitors, and thus represent potential victims which cannot

be immediately traced back to an account at the organization.

To ensure consistency across my measurements in the following sections, I de�ne the

set of Compromised Visitors as those Known Visitors whose accounts were subsequently

either accessed by an a�acker or had at least one fraudulent transaction. I consider

only these events in my analysis of monetization e�orts, as the sequence of observations

strongly suggests that a phishing a�ack succeeded against the corresponding victims. I do
2I believe that both of these spikes are associated with the e�ectiveness (and proliferation) of highly

sophisticated phishing websites, which I characterize in Section 6.7.1.
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not disclose the total number of unique victims within these two sets for reasons discussed

in Section 6.9.

6.5 Progression of Phishing A�acks

To create an end-to-end timeline of the progression of phishing a�acks, I calculate

the relative di�erence between the timestamp of each Golden Hour web event and the

original detection of the corresponding phishing URL within a feed, as correlated by my

framework. I calculate similar timestamp di�erences for e-mail lures, account compro-

mise, and fraudulent account transactions. I can then plot a histogram of victim tra�c

relative to a�ack detection, alongside the average timestamps of key a�ack milestones.

Note that the e�ect of outliers on these averages is inherently suppressed by my use of a

�xed observation window for each phishing URL’s web events.

In Figure 6.5, I show such a histogram for Compromised Visitors: in other words, ev-

ery user represented in the �gure was highly likely to have been successfully fooled by

a phishing a�ack. I count multiple events from the same victim on the same phishing

website only once. For brevity, I do not separate Page URL and Referring URL events in

my �gures, as these did not di�er signi�cantly except in the success rates of subsequent

account compromise (discussed in Section 6.5.3).

I observe that phishers enjoy a large window of opportunity when carrying out their

a�acks. Nearly nine hours elapse between the average �rst victim visit and detection by

the ecosystem. By this time, the phishing websites have already lured 62.73% of victims.

Moreover, victim visits continue at a slower pace for the next 12 hours. I show the Cu-

mulative Distribution Function (CDF) of Compromised Visitor web events in Figure 6.6a.

Despite the 21-hour time frame (-08:44 to +12:26) of a typical phishing a�ack illustrated

in Figure 6.5, there exist some a�acks with a longer overall duration.
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Figure 6.5: Histogram of Compromised Visitor tra�c to phishing websites, annotated with

di�erent a�ack stages.
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(a) Compromised Visitor tra�c. (b) Phishing e-mail distribution.

(c) Fraudulent transactions.

Figure 6.6: Cumulative Distribution Function (CDF) plots depicting key phishing a�ack

stages.

6.5.1 Initial Tra�c

�e average �rst non-victim visit to each phishing website occurs 9 hours and 42

minutes prior to a�ack detection, as shown in Figure 6.5. I believe that such visits are

representative of a�ackers’ initial testing of each phishing website.

I performed an unequal variance T-test [113] to compare the distribution of the relative

timestamps of the �rst event (for each a�ack) within the Other category to the �rst event

for Known Visitors. I �nd the means of the two distributions to be statistically signi�cantly

di�erent, with a p value of 0.011. Furthermore, in Table 6.3, I show that top geolocations

within the former set closely coincide with countries disproportionately associated with

cybercrime [67] (and inconsistent with the organization’s customer base).
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Country
Other

Tra�c
Country

Known Visitor

Tra�c

United States 32.84% United States 65.48%

Morocco 9.17% United Kingdom 6.15%

Indonesia 8.16% Canada 4.26%

United Kingdom 6.08% Italy 3.05%

Algeria 3.73% Spain 2.78%

Canada 2.99% Australia 2.58%

Germany 2.88% Germany 2.29%

Brazil 2.35% Mexico 1.46%

Tunisia 2.29% France 0.93%

Italy 2.24% Netherlands 0.79%

France 1.92% Brazil 0.72%

Iraq 1.60% Singapore 0.64%

Egypt 1.44% Ireland 0.40%

Spain 1.39% Belgium 0.40%

Nigeria 1.39% Portugal 0.38%

Table 6.3: Geolocation of initial visits to phishing sites, by tra�c category.

6.5.2 Phishing E-mail Distribution

I show the CDF of phishing e-mail distribution in Figure 6.6b. Note that prior to a�ack

detection, the cumulative proportion of victim visits to phishing websites (in Figure 6.6a)

grows at a faster rate than e-mails sent. In other words, tra�c from phishing e-mails

to phishing websites drops a�er a�ack detection, as should be expected following the

intervention of spam �lters. However, just one day a�er detection, the rate of victim

visits once again starts outpacing the sending of e-mails. �is suggests that victims will

follow non-blacklisted links in old e-mails, and, thus, a�ackers continue to pro�t without
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further intervention. We, therefore, believe that e�ective take-down remains an important

secondary mitigation to suppress long-lasting phishing a�acks [1].

6.5.3 Progression of Monetization E�orts

In my dataset, the accounts of 7.42% of distinct Known Visitors subsequently su�ered

a fraudulent transaction; I believe this represents a lower bound on success rates and sub-

sequent damage from phishing, as my approach does not identify victimization of the

Other tra�c. A�er each victim’s visit to a phishing website, I found that such a transac-

tion would occur with an average delay of 5.19 days. However, as I show in Figure 6.6c,

fraudulent transactions grow consistently over a 14-day period, with the earliest ones oc-

curring less than one hour a�er a victim visit. Although 3.99% of fraudulent transactions

in my dataset occurred a�er the 14-day period, the increasing potential for mitigation

encourages a�ackers to act quickly.

�e credentials of 63.61% of these compromised victims would additionally appear in

a public dump, with an average delay of 6.92 days. �is trend suggests that criminals

tend to �rst monetize the accounts of their victims, and only later sell credentials within

underground economies [16].

�e Golden Hour dataset does not provide insight into the monetization of each vic-

tim’s stolen personal information beyond the organization’s own systems. I �nd that

the average victim makes 2.43 page loads during his or her interaction with a phishing

website—enough to visit a landing page and submit credentials. Some victims, however,

made substantially more visits during a single session. A�er inspecting the chain of phish-

ing URLs visited in such sessions, I believe that such victims provide additional personal

information to the phishing website (i.e., one with multiple data collection forms), and

could thus su�er from identity the� or other �nancial fraud. Per my dataset, I observed

that victims with an above-average number of page loads who also appeared in a Refer-
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Figure 6.7: Impact of blacklisting on phishing e�ectiveness.

ring URL event (i.e., returned to the organization’s website a�er presumably completing

interaction with the phishing website) were 10.03 times more likely to later encounter a

fraudulent withdrawal from their account.

6.5.4 Estimating Blacklist E�ectiveness

Given the ubiquity of browser blacklists, the role of blacklisting in preventing phishing

in the wild is a key measurement I seek to estimate. �e mitigation from blacklists can

be delayed for two main reasons: failure of backend systems to �ag a given phishing URL

or the lag between backend �agging and data propagation to clients (e.g., browsers) [48].

�is lag period may vary between the same browser on di�erent devices due to di�erences

in cache state [101].

We can meaningfully estimate the overall impact of blacklisting on phishing a�ack

e�ectiveness by calculating the ratio of Compromised Visitors for browsers with native

blacklists and Compromised Visitors for all browsers, at regular time intervals a�er a�ack

detection (i.e., a�er the midpoint of Figure 6.5), and subsequently comparing this ratio to a

baseline ratio just prior to detection. �is ratio is not sensitive to the decrease in absolute

phishing tra�c as it simply isolates the likelihood that the phishing a�ack will be suc-
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cessful (Compromised Visitors are visitors who likely submi�ed credentials to a phishing

website).

As I show in Figure 6.7, blacklisting starts noticeably reducing the relative e�ective-

ness of phishing a�acks within one hour a�er detection, at which point the ratio of Com-

promised Visitors drops to 71.51%. By the end of the second hour, the ratio drops further

to 43.55%: at this point, a�acks are less than half as e�ective as they were originally.

�e e�ectiveness continues declining more slowly until the seventh hour and therea�er

stabilizes within the 0-10% range.

Blacklists are clearly an e�ective mitigation overall, but a�ackers can and do abuse

delays in blacklists’ reaction, as I have demonstrated. In addition, certain evasion tech-

niques, which I discuss in Section 6.7.1, can prevent blacklisting from occurring, even a�er

a�ack detection. Additional mitigations are required to thwart the trickle of Compromised

Visitor visits which I observed many hours a�er detection.

By comparing the mitigation provided by blacklists in Figure 6.7 with the victim traf-

�c volume in Figure 6.5, we can model the potential reduction in phishing victims that

would occur if blacklisting performance were improved by the ecosystem, or if a�ack

discovery occurred earlier. Given the observation that a large proportion of victim tra�c

occurs within a short time window, even a small increase in the speed of blacklisting (or

other browser-based mitigations) could drastically reduce the potential number of vic-

tims who end up visiting phishing pages. For example, in Figure 6.5, 25% of all victim

visits happened in just 83 minutes (during the interval from 40 minutes before detection

to 43 minutes a�er detection). Faster blacklisting could help reduce the number of victims

accordingly.
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Figure 6.8: Classi�cation of phishing URL content in the Golden Hour dataset.

6.6 Phishing Website Characteristics

In this section, I analyze metadata related to the phishing websites in my dataset in an

e�ort to be�er understand the characteristics of successful a�acks. I consider all phishing

URLs with at least one Compromised Visitor event.

6.6.1 Phishing URL Classi�cation

A�ackers have traditionally cra�ed phishing URLs to deceive victims by either mim-

icking the brand being impersonated by the phishing website (e.g., www.brand-alerts.com),

or by including misleading keywords which convey a desire to help the victim (e.g., secure-

my-account.com) [41].

I apply the classi�cation scheme from Table 3.3 (in Chapter 3) to the URLs in my

dataset and show the results in Figure 6.8 [102]. I observe that 28.70% of all URLs have no

deceptive content whatsoever; 34.76% have non-deceptive domains with deceptive paths

only. 8.64% use deceptive subdomains on a non-deceptive domain, and the remaining

27.90% have deceptive domains (0.52% with Punycode [21]). �e nature of deceptiveness
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is similarly split between brand names and misleading keywords, except in the case of

subdomains, which favor brand names. Bare IP addresses were negligible in my dataset

and thus are excluded from the �gure.

�e vast majority of phishing URLs (98.58%) were hosted on traditional, paid domain

names. Only 0.79% of URLs leveraged subdomains from free hosting providers; 0.63% had

domains with free ccTLDs [102]. However, compromised hosting infrastructure plays a

key role, which I assess in Section 6.7.

With the increasing use of mobile devices to browse the Internet, the importance

of URL content has diminished (i.e., because of limited screen real estate on such de-

vices) [73]. However, the heavy use of redirection in phishing lures allows a�ackers to

somewhat comfortably continue using deceptive URLs (which would otherwise be easily

detectable by text-based classi�ers) on their landing pages.

6.6.2 Device and Browser Type

Browser Name Tra�c Share

Chrome Mobile 29.72%

Safari Mobile 22.38%

Chrome 21.56%

Samsung Browser 7.97%

Edge 5.53%

Safari 4.10%

Firefox 3.66%

Internet Explorer 3.21%

Other 1.87%

(a) By browser.

Device Tra�c Share

Android 35.70%

Windows 28.13%

iOS 27.03%

OS X 8.35%

Other 0.79%

(b) By device.

Table 6.4: Known Visitor tra�c share by browser and device.
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As shown in Table 6.4, mobile devices accounted for 62.73% of all victim tra�c in

my dataset. Browsers protected by Google Safe Browsing—Chrome, Safari, and Firefox—

accounted for 81.42% of the tra�c (roughly consistent with their overall market share) [120].

�e wide use of these browsers, in particular on mobile platforms, underscores the im-

portance of the e�cacy of the anti-phishing features which they natively include.

�e Samsung Browser, which does not currently include safe browsing functionality

to the best of my knowledge, and thus leaves users particularly vulnerable to phishing,

had a disproportionate representation of 7.97% in my dataset.

I studied the behavior of individual browsers in detail in Chapters 4 and 5, and such

behavior is, therefore, outside of the scope of my analysis in this section [101]. However,

I did observe that browsers with proactive heuristic-based anti-phishing features (Edge

and Internet Explorer) led to relatively fewer Compromised Visitor visits in the long term

compared to other browsers with only blacklists.

6.6.3 Use of HTTPS

�e web has moved away from traditional HTTP in favor of encrypted communica-

tion over HTTPS; phishers started following this trend in 2017 [5], which has been simpli-

�ed through the wide availability of free SSL certi�cates [69]. Within my entire dataset,

66.85% of distinct URLs used HTTPS. However, these URLs accounted for 85.77% of the

Compromised Visitors. Phishing a�acks with HTTPS thus proved about three times more

successful than HTTP. Even though some successful phishing a�acks still occur on unen-

crypted websites, I believe that such infrastructure is now of reduced interest to phishers.

Simultaneously, the potential impact of Certi�cate Authorities (CAs) in helping prevent

abuse—especially on a�acker-controlled domains—has grown. For example, CAs could

more closely examine requests for certi�cates for suspicious-looking domains or domains

with a malicious history, or proactively warn organizations of potential a�ack websites.
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6.7 Phishing Campaign Longevity

Rank
First Seen

Date

Last Seen

Date

Campaign

Duration

(Days)

Known

Visitor

Events

Average

Events

Per Day

Distinct

URLs

Reported

URL Text

Classi�cation

Domain

Type

1 01/06/2019 09/22/2019 259 145,306 560 41 Deceptive Path Only Compromised

2 08/30/2019 09/26/2019 27 115,616 4,329 41 Deceptive Subdomain Compromised

3 07/20/2019 09/14/2019 56 102,601 1,847 40 Non-deceptive Free Subdomain

4 01/11/2019 01/15/2019 4 82,636 20,487 6 Deceptive Path Only Regular Registration

5 06/14/2019 06/20/2019 6 71,478 11,681 56 Non-deceptive Compromised

6 04/21/2019 05/27/2019 36 71,037 1,992 39 Deceptive Path Only Regular Registration

7 08/11/2019 08/17/2019 5 59,911 11,296 40 Deceptive Subdomain Free Domain

8 03/14/2019 04/22/2019 39 55,147 1,427 81 Deceptive Subdomain Regular Registration

9 08/30/2019 09/26/2019 27 50,402 1,877 28 Deceptive Subdomain Compromised

10 01/07/2019 01/07/2019 1 49,627 49,627 8 Deceptive Subdomain Free Subdomain

11 12/22/2018 12/26/2018 4 44,502 10,806 45 Non-deceptive Compromised

12 06/23/2019 06/28/2019 6 42,574 7,708 22 Deceptive Subdomain Free Subdomain

13 09/24/2019 09/25/2019 2 42,406 21,203 29 Deceptive Domain Regular Registration

14 12/12/2018 01/02/2019 21 38,484 1,814 16 Deceptive Path Only Compromised

15 10/06/2018 02/22/2019 140 32,591 233 39 Deceptive Path Only Compromised

16 12/11/2018 12/29/2018 18 30,983 1,768 63 Deceptive Subdomain Regular Registration

17 10/31/2018 03/24/2019 145 30,853 213 90 Deceptive Path Only Regular Registration

18 09/12/2019 09/22/2019 10 30,781 2,990 23 Deceptive Path Only Compromised

19 03/19/2019 03/24/2019 4 23,552 5,399 21 Deceptive Path Only Regular Registration

20 08/13/2019 08/15/2019 3 22,254 7,418 16 Deceptive Domain Regular Registration

Table 6.5: Top phishing campaigns by the number of Known Visitor events.

Prior research has stipulated that individual phishing a�acks tend to be short-lived

and that they capitalize on the narrow gap between deployment and detection [76]. De-

spite some caveats, I have made a similar observation in Section 6.5. However, these

observations do not capture trends within broader phishing campaigns, which may entail

a group of organized criminals involved in the successive deployment of persistent and

sophisticated a�acks.
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To gain be�er insight into long-term phishing campaigns, I group phishing URLs from

events in my dataset by domain (or by hostname in the case of free subdomain hosting

providers). I then sort the groups by the total number of unique Known Visitor events to

capture variations in hostname or path for a�acks that are likely related3. I de�ne the date

range of a campaign as the time between the �rst and last web event from a Compromised

Visitor ; I found the average date range to be 13.55 days.

Figure 6.9: Share of Known Visitor events by top a�acks.

I discovered that the top 5% of a�acks accounted for 77.79% of Known Visitor events

within my dataset, and the top 10% for 89.13% (as re�ected in the CDF in Figure 6.9).

I then manually analyzed the top 20 campaigns (these alone accounted for 23.57% for

Known Visitor events), some of which lasted several months each, as shown in Table 6.5.

I also determined whether they were hosted on compromised domains (i.e., otherwise

belonging to a legitimate website) or domains directly controlled by a�ackers.
3Some threat actors pivot across di�erent infrastructure and might thus be underestimated by domain-

based grouping of a�acks. Con�dently grouping a�acks by other a�ributes, such as a phishing kit signature

or drop e-mail, would require additional data. �e same applies in case di�erent threat actors were to

leverage a single domain.
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6.7.1 Sophistication and Evasion

To understand the success of the top phishing a�acks, I manually inspected the content

(and, when possible, phishing kits) of high-impact phishing URLs that were live during

the online deployment between July 1 and September 30, 2019. I identi�ed such URLs by

spikes in the number of Known Visitor events associated with any individual hostname.

�e characteristics I found contribute to the a�acks’ success not only by avoiding de-

tection by anti-phishing infrastructure, but also by more e�ectively targeting human vic-

tims. I quantify my observations to the extent possible given my methodology; however,

a more comprehensive measurement would be suitable for future work.

BroadDataCollection: �e sophisticated phishing websites which I analyzed mark a

clear departure away from single-page login forms, and thus venture far beyond mere the�

of usernames and passwords [22]. Phishers fully match the page structure of the victim

organization’s website, complete with a homepage with links to (fraudulent) login pages

and resources in case the victim was to navigate away from the initial landing page. Once

the victim returns to the login page and starts interacting with the phishing website, it

will seek to harvest extensive personal and �nancial information, identity documents, and

even photographs (i.e., sel�es) to steal and more e�ectively monetize victims’ identities.

Automatic Translation: Five of the phishing websites in Table 6.5 used the visitor’s

geolocation to automatically translate their deceptive content. Manual analysis of the

phishing kit used on one of these websites revealed a total of 14 language options that

coincided with the targeted brand’s major markets.

Human Veri�cation: I observed that as part of a URL redirection chain, some at-

tackers would show a reCAPTCHA challenge [133] prior to redirecting the victim to the

phishing landing page. Also, one speci�c phishing kit showed a CAPTCHA challenge

directly on its landing page before allowing the victim to input any credentials. Such
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challenges not only hamper the veri�cation of phishing content by automated systems,

but may also trick users into proceeding due to the use of CAPTCHA on legitimate web-

sites.

Cloaking: All the phishing websites which I analyzed leveraged server-side cloaking,

a well-known technique that seeks to block tra�c based on a blacklist (or a whitelist) of

request a�ributes such as IP address or hostname, as discussed in Chapter 3 [58, 102,

125]. Such cloaking intends to restrict access from security crawlers or other non-victim

entities. Also, some phishing kits include an initial landing page that contains nothing

but a simple piece of JavaScript code or an HTML Meta tag to redirect the victim to the

true phishing page. Such code could defeat basic crawlers that look at static HTML only.

Victim-speci�c Paths: Eight of the campaigns in Table 6.5 had a landing page that

automatically generates a sub-path unique to each visitor’s IP address, and then imme-

diately redirects to that path. �e path is not visible to other IP addresses, and would

thus evade crawlers visiting a previously-generated path rather than the a�ack’s initial

landing page.

Fake Suspension Notices: As a deterrent to take-down e�orts [1], when a visitor

fails cloaking checks, I observed that several phishing websites displayed a misleading

message indicating that the domain has been suspended, rather than a generic HTTP 404

or 403 error message [40]. �is could lead hosting providers to believe that a malicious

page had already been taken down, and the provider would take no further action, when

in reality the website was still capable of serving phishing content.

Man-in-the-Middle Proxies: Rather than a traditional phishing kit, two of the large

phishing a�acks that I analyzed used a proxy that would make live requests to the legit-

imate organization’s website and display the page to the user while intercepting all data

submi�ed [36]. Such proxies can defeat most forms of two-factor authentication [129]

and may require special care to mitigate by the targeted organization.
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6.7.2 A�ack Mitigation

While analyzing the sophisticated a�acks in Table 6.5, I simultaneously manually re-

ported them to anti-phishing entities and hosting providers. By the time the many original

URLs were blacklisted, the a�ackers would have redeployed subsequent a�acks on di�er-

ent subdomains or paths, which would, in turn, necessitate another cycle of blacklisting.

In this manner, a�ackers can stay one step ahead of the ecosystem. When paired with

bulletproof hosting (i.e., resistant to take-down from abuse reports) [65] or successive re-

compromise of legitimate, albeit vulnerable, infrastructure, such a�acks remain e�ective

for prolonged periods.

To help overcome the challenges faced by the ecosystem, I adapted the Golden Hour

framework to perform proactive mitigation of a�acks. I reported events corresponding

to Known Visitor back to the victim organization, such that the organization could �ag

accounts to prevent successful compromise or re-secure accounts that had already been

compromised. I reported tens of thousands of distinct events in this manner, which has

motivated the permanent adoption of my framework by the organization.

�e Golden Hour framework can also be used to discover previously-unknown phish-

ing URLs based on heuristics such as textual URL content (applied during correlation) or

context. Such URLs can then be reported to blacklists and propagated through the ecosys-

tem. Due to technical limitations, I did not automate this aspect of the framework during

the deployment. In a retrospective analysis, I found that this would have potentially in-

creased the number of web events in the dataset by 7.28%, which, if reported, could help

narrow the gap in the detection of phishing a�acks by the ecosystem.
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6.8 Discussion

Although individual evasion techniques might not su�ce to defeat the modern anti-

phishing ecosystem, the increased degree of sophistication which arises from the combi-

nation of such techniques poses a key threat. I have shown that in terms of the number of

victims compromised, sophisticated and persistent phishing a�acks dominate, and should,

therefore, be a priority for the ecosystem. At a more granular level, both the response time

of blacklists (which protect victims once a phishing a�ack is detected) and speed of initial

detection (which closes a�ackers’ window of opportunity), through spam �lters and other

means, warrant improvement.

6.8.1 Data Sharing

�e mere fact that so many of phishing websites in my dataset embed third-party re-

sources shows that a�ackers do not fear being detected by certain organizations. Conse-

quently, there is an opportunity for increased data sharing across the ecosystem to be�er

detect threats based on proactive intelligence indicative of a�acks: the web events from

Golden Hour are just one example of such intelligence.

Reporting Phishing: Sophisticated phishing a�acks thrive from being seemingly

untouchable by the ecosystem. In the case of cloaked phishing websites, simple URL-

based reporting to blacklists—such as what is currently commonly carried out through

automated systems and web submission forms [48]—fails to provide su�cient context for

the blacklist to expeditiously and e�ectively verify the phishing content.

With only a URL in hand, the blacklist may not be able to determine the parameters

required to defeat the cloaking. I experienced this phenomenon when manually report-

ing certain URLs from the sophisticated a�acks in Table 6.5 to Google Safe Browsing; by

the time such URLs would get blacklisted, a�ackers would have shi�ed their websites
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to alternate paths or subdomains on the same web server. Enhanced phishing reporting

protocols—ideally bolstered by trust between ve�ed entities within the ecosystem—could

help anti-phishing entities share detailed a�ack data at scale. Without sacri�cing user

privacy, su�ciently detailed information should be shared (e.g., request parameters, redi-

rection chains, or a screenshot) [23]. �is would be a key step toward increasing the

e�ectiveness of blacklists against evasive phishing.

Similarly, the ecosystem currently lacks standardized approaches for malicious con-

tent take-down [1]. Although major hosting providers may have well-documented av-

enues for removing phishing websites, a�ackers �ourish by using bulletproof hosting [65]

or small hosts with fewer resources for timely intervention, or by compromising infras-

tructure.

Phishing Links in E-mails: A�ackers make heavy use of redirection links in phish-

ing e-mail lures. As I have shown, such links complicate the correlation of phishing e-

mails with live websites—and, in turn, hamper further mitigation e�orts, such as black-

listing. During my data collection period, I found that only 1.98% of links in lures were

blacklisted by Google Safe Browsing at the time the report was received 4.

Additionally, I observed an average delay of 9.62 hours between the start of each phish-

ing e-mail campaign (i.e., the initial arrival of a phishing message) and the �rst report sent

by a victim. Due to this delay, I believe that direct user reports should only serve as a sec-

ondary means for entities to discover new phishing a�acks. E-mail providers who directly

receive phishing messages are in a be�er position to respond quickly, and could positively

impact the ecosystem by directly sharing URLs with the organizations which they target,

or with clearinghouses, when su�cient con�dence exists [16].

In my dataset, at the granularity of individual phishing hostnames, e-mail lures were

sent in large spikes, similar to what has been previously observed [76]. If a message is
4A larger percentage of landing URLs may have been blacklisted, however.
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initially classi�ed as benign but the URL within it is later detected as phishing, the e-mail

should retroactively be hidden from the user by the e-mail system.

6.8.2 �ird-party Resources

It may seem counter-intuitive for malicious websites to embed external web resources

hosted (and trackable) by third parties, especially in light of my �ndings that these re-

sources enable both analysis and mitigation of phishing a�acks. However, I argue that

phishing websites will nevertheless use external resources for several reasons.

Most importantly, anti-phishing systems use known �lenames of scripts, images, fav-

icons, and archives as one type of �ngerprinting to identify malicious websites [42, 102].

Phishing pages which only link to external �les can avoid such �ngerprinting entirely;

with the added use of cloaking on their landing pages, phishing websites can remain

stealthy to avoid or delay detection by the ecosystem.

In some cases, a�ackers choose to use third-party services for their own bene�t. Within

my dataset, the use of reCAPTCHA is one such example. Additionally, I observed phish-

ing websites hosted on single-page pastebin services [77]. In order for phishing pages to

render correctly on such services (and thus successfully fool victims), most images and

scripts must be retrieved from external sources.

�e use of external �les can also ensure consistency between the look and feel of the

legitimate website and a phishing page. Phishing kits can thus remain current without

the need for frequent updates, which may be particularly desirable for phishers who do

not want to invest money into sophisticated phishing kits. It is also easier for a�ackers

to directly copy the source of the original page than to build a deceptive version from

scratch.

Even if they do not embed third-party resources, phishing websites may link back to

the legitimate organization’s website and could thus be detected by my approach. �e
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same applies if victims are redirected back to the legitimate website a�er being phished:

a common strategy used by a�ackers to minimize victims’ awareness of the a�ack.

6.8.3 Ethical Considerations

I took great care to ensure that user privacy was preserved throughout this research.

My analysis did not involve access to any PII, and processing which entailed datasets

that could contain PII (such as user account information or e-mail report content) was

carried out in a purely programmatic fashion by existing, automated systems. During

my analysis of user account compromise times, I only handled anonymized session or

account identi�ers which were interpreted and aggregated by the organization with which

I collaborated.

Entities that become aware of compromised accounts within their systems—through

internal or external data sources—should make reasonable e�orts to re-secure such ac-

counts [125]. During my research, I ensured that user accounts that I associated with

phishing website tra�c by Golden Hour were appropriately �agged by the organization.

Furthermore, I recommended that the organization investigate accounts associated with

users who likely visited a sophisticated phishing website, in an e�ort to identify and

thwart the underlying threat actors.

6.9 Limitations

My analysis should be considered alongside certain limitations. Despite a large sample

size, my data is based on victim tra�c to phishing websites that target a single organi-

zation, which may skew my �ndings. However, the Golden Hour framework is not tied

to any individual organization; thus, future analysis of other datasets could deepen the

degree of insight into the ecosystem.
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Due to the nature of my agreements with the organization, I cannot disclose certain

concrete �ndings from our analysis, such as the total pro�t secured by a�ackers. Also,

the success of phishing a�acks hinges on numerous factors—such as the content and type

of the original lure, appearance of the landing page, or redirection services used—which

I did not consider, but which could provide details about the ecosystem vulnerabilities

being exploited.

Despite the incentives for phishers to use third-party resources, as discussed in Sec-

tion 6.8.2, my approach does not guarantee the detectability of an arbitrary phishing web-

site. Phishers could deliberately evade my approach by excluding any trackable third-

party �les and avoiding redirecting victims back to the organization’s website.

�e time frame of my e-mail dataset is shorter than that of my web event dataset. I

originally intended to correlate the event data with phishing URLs sent to victim inboxes

at a major e-mail provider over the full data collection period. However, the prevalence

of redirection links within phishing e-mails made such correlation di�cult to scale, and I

was not able to develop an alternative approach within the parameters of the established

data-sharing agreement.

Lastly, my web event correlation approach (stage 3 of the framework) bene�ts from

the ability to accurately classify URLs as suspicious from within a large stream of tra�c

data, or a reliable source of ground truth (i.e., known phishing URLs) to match events. I

only did the la�er during my deployment; however, I consider my data sources (in Sec-

tion 6.4.1) to be of high quality: peaks in Crawler tra�c in my event dataset coincided

with detection times of URLs in the phishing feeds considered. Yet, recent research has

shown that even reputable anti-phishing vendors fail to identify many of the phishing

URLs reported to them [106]. Future deployments of my approach should maximize the

number of data sources for correlation to further increase visibility.
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6.10 Related Work

Because phishing a�acks are by nature spread across diverse infrastructure, empirical

measurements of the relationships between the di�erent a�ack phases are di�cult. Nev-

ertheless, such measurements can deliver crucial insights that are not possible at a �ner

granularity. To the best of my knowledge, this work is the �rst to paint an end-to-end

picture of phishing a�acks at scale by correlating victim tra�c to live phishing websites

with a�ack distribution and monetization.

�e work most closely related to what I presented in this chapter is that of Heijden

and Allodi [130], who leveraged methodology similar to Golden Hour to correlate URLs in

phishing e-mails (reported to an organization) with the timestamps of clicks by individual

victims. �e authors combined the click data with e-mail content analysis to identify

cognitive and technical factors that characterize successful phishing e-mails, which can

help prioritize the mitigation of high-impact phishing URLs.

Han et al. monitored the life cycles of phishing kits installed on a honeypot [51].

Unlike my approach, the authors captured the credentials sent by each phishing kit and

more closely analyzed a�ackers’ interaction with the kit. However, honeypots are limited

in scale and scope compared to my approach and do not o�er insight into the damage

caused by phishing, such as how stolen credentials are ultimately used.

�omas et al. [125] analyzed a one-year dataset of data breaches, phished credentials,

and keyloggers to study trends in the users victimized by such a�acks, and the e�ective-

ness of each type of a�ack. Although this work did not strictly focus on phishing a�ack

anatomy, it underscores the e�ectiveness of large-scale, cross-organizational data analysis

to capture the state of the ecosystem.

Ho et al. [55] analyzed over 113 million e-mails sent by employees of enterprise orga-

nizations to model lateral phishing a�acks carried out via compromised e-mail accounts.
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�e authors revealed new types of a�acks marked by both sophistication and e�ective-

ness. Although this work does not focus on traditional phishing, it shows that important

insight can be gained from analyzing a�ack data at scale.

Other prior work has scrutinized the time between phishing a�ack detection and

blacklisting [98]. In Chapters 4 and 5, I conducted a controlled empirical analysis of the

e�ectiveness of evasion techniques against the response time and coverage of browser

anti-phishing blacklists [101]. �e studies revealed weaknesses in blacklists and mea-

sured the gap between a�ack detection and mitigation under speci�c conditions: a gap

which I also observed using the Golden Hour dataset.

In early measurements of the ecosystem, Moore and Clayton analyzed the temporal

relationship between the sending of spam e-mails and the availability of phishing web-

sites [92], as well as the latency between phishing deployment and detection by anti-

phishing blacklists [91]. �e authors cited a need for take-down due to the persistence of

spam campaigns.

6.11 Summary

At their disposal, phishers have an array of sophisticated techniques that aim to cir-

cumvent existing anti-phishing defenses and increase the likelihood of compromising vic-

tims. With the addition of underground resources, such a�acks are scalable, as has long

been observed by the ecosystem [6]. However, the ecosystem itself is not powerless to

�ght back, as it has access to a wealth of data that can be used to analyze, detect, and

prevent phishing. By correlating data from multiple ecosystem sources, I performed a

longitudinal, end-to-end life cycle analysis of phishing a�acks on a large scale: I not only

gained insight into the timing of key events associated with modern phishing a�acks, but

also identi�ed the gaps in defenses that phishers actively target. Furthermore, by ana-

lyzing the Golden Hour dataset discussed in this chapter, I was able to replicate the gen-
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eral �ndings of the empirical measurements originally made by PhishFarm and PhishTime

(Chapters 4 and 5), which further speaks to the importance of strengthening weaknesses

within the ecosystem.

Phishing remains a signi�cant threat to Internet users in part because the reactive

anti-phishing defenses that are standard throughout the ecosystem, such as blacklists,

struggle to e�ectively address the agility and sophistication of a�ackers. Importantly,

analysis such as that carried out in my research can inform anti-phishing entities of an

appropriate response time threshold for speci�c mitigations, to ultimately narrow the

window of opportunity available to phishers.

My use of the Golden Hour framework to automatically secure the accounts of tens of

thousands of phishing victims also motivates the continued expansion of proactive mit-

igations within the ecosystem. �e framework could be practically adapted by any or-

ganization (commonly targeted by phishers) that tracks its own phishing URL and web

tra�c data, and can help seal gaps in defenses by securing compromised user accounts

and enabling the earlier detection of phishing websites. Moreover, closer collaboration

between anti-phishing entities, coupled with the development of enhanced and standard-

ized mechanisms for sharing intelligence, would allow such mitigations to be�er scale to

the ecosystem level.
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Chapter 7

CONCLUSION

�rough the work presented in this dissertation, I have examined phishing a�acks

from multiple angles, which, collectively, provide critical insight into ways in which the

security community can continue improving its defenses to protect Internet users from

phishing. Security recommendations made as a result of my work have already directly

helped strengthen some of these defenses, such as browser blacklists on mobile devices1,

the data sources and detection strategies used by blacklists2, and proactive anti-phishing

mitigations3.

I began my analysis from the perspective of phishers’ own tools, which revealed the

widespread and commoditized use of evasion techniques in phishing websites. I then

developed and executed methodology (PhishFarm) to measure how well browser blacklists

(a key ecosystem defense)—and speci�c anti-phishing entities—detect and mitigate these

evasive websites.

Next, I generalized my methodology into a framework (PhishTime) for continuously

measuring the performance of the anti-phishing ecosystem, in the long term, by identi-

fying and replicating the characteristics of sophisticated phishing a�acks being launched

by criminals. �rough a one-year study, I found that although the ecosystem had ad-

dressed some of the vulnerabilities identi�ed by PhishFarm, other exploitable gaps re-

mained. �ese gaps help explain why phishers remain persistent in their a�acks.
1See Section 4.6.1.
2See Section 5.11.
3See Section 6.7.2.
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Finally, I developed a novel and practical approach (Golden Hour) for building a mean-

ingful dataset of real victim tra�c to live phishing websites. I leveraged this dataset to

perform the �rst end-to-end analysis of modern phishing a�acks: from the time of e-mail

distribution, to the victim interaction with the phishing website, to account monetization.

�is analysis not only validated many of the empirical �ndings from Chapters 3-5, but also

shed light on the real-world damage that evasive phishing a�acks cause. Moreover, my

approach inspired me to propose a proactive mitigation strategy that can help organiza-

tions secure the online accounts of users who have been tricked by phishers, such that

those accounts cannot subsequently be monetized by criminals.

7.1 Remaining Challenges in Anti-phishing

�e modern anti-phishing ecosystem represents a considerable improvement over

early decentralized mitigations [137], and it has continued to evolve—with notable changes

even occurring as I conducted my research (between 2017 and 2019). �e tremendous ef-

forts made to date by security researchers and by industry should not be overlooked.

However, I believe that many of the factors that have historically motivated phishers to

carry out their a�acks remain unchanged. �erefore, multi-layer mitigation strategies

continue to be essential in the �ght against phishing.

A key challenge within the ecosystem is the ease at which phishers can obtain infras-

tructure to carry out their a�acks, whether it be through compromising legitimate web

servers or partnering with service providers with lax abuse policies [1]. In some cases, the

rise of legislation which promotes online privacy has also started hampering anti-abuse

e�orts, and may even help a�ackers cover their tracks [132]. At the same time, the dis-

tributed nature of phishing and the decentralized nature of reporting protocols makes it

di�cult to consistently track a�ackers from a law enforcement perspective.
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As I have discussed throughout this dissertation, anti-phishing systems that operate at

the ecosystem level are complex. Methods for evaluating these systems (e.g., PhishTime)

are not currently standardized or used routinely and it has, therefore, been di�cult to

maintain an understanding of the e�ectiveness of current defenses and designate entities

that could be held accountable for speci�c de�ciencies. �is situation is exacerbated by

the di�culty of measuring the impact of phishing across the ecosystem as a whole: for

example, organizations that know that their customers’ credentials have been phished

may seek to protect the accounts of these customers, but may not be able to prevent

identity the� at other organizations even if they otherwise desire to do so (e.g., due to the

lack of standard data-sharing protocols).

Because phishing is grounded in social engineering, training users to be aware of such

a�acks is an e�ective way to mitigate them [30, 68]. Yet, the awareness of the average

Internet user remains insu�cient [55, 103, 130] and is, thus, something that can also be

promoted and improved upon across the ecosystem. More aware users would be more

likely to spot and report phishing, which could speed up the ecosystem’s discovery of at-

tacks and lead to standardized approaches for sharing such reports between organizations

to respond more comprehensively and track criminals more e�ectively.

7.2 Protecting the Internet of Tomorrow

It is my hope that beyond helping improve existing ecosystem defenses, the work

presented in this dissertation inspires the next generation of anti-phishing systems as

well as mitigations against broader online scams and other malicious content. For as

long as phishing remains a problem, I believe that monitoring the ecosystem—similar to

how PhishFarm and PhishTime operate—is critical to ensuring that adequate defenses are

maintained. Although it may be di�cult to ever fully prevent users from being deceived

by social engineering tactics, technical systems should seek to tighten the noose around
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the economics (i.e., pro�tability) of scams such as phishing. �e cat-and-mouse game

between a�ackers and defenders will continue inde�nitely unless the ecosystem treats

the underlying motivation of phishers, rather than the “symptoms” of phishing.

As we’ve observed with other types of cyber a�acks [115], if and when phishing ceases

being su�ciently pro�table, a�ackers will likely abandon it and gravitate toward more

viable alternatives. Within the realm of social engineering, a�ackers could turn to other

types of scams that lack the same degree of scrutiny or ecosystem protection as phish-

ing [50]. For example, even though today’s browser-based anti-phishing systems block

malicious (phishing) websites that impersonate well-known organizations, browsers do

not block other fraudulent websites such as fake stores, high-yield investment schemes,

or misleading services [8]. Likewise, scams that leverage communication channels other

than e-mail, such as SMS text messages or phone calls, are considerably harder to track

using current methods [128]. �e ecosystem should, therefore, be prepared to adapt its

defenses to new social engineering a�ack variants.

To reduce the aforementioned pro�tability of phishing, the ecosystem can work to

systematically hamper the scalability of phishing a�acks (from the perspective of web in-

frastructure) while simultaneously reducing the intrinsic value of stolen information. For

example, initiatives such as passwordless authentication [63] can eliminate the need for—

and many of the problems associated with—usernames and passwords [125]. A similar

approach could be taken with payment information like credit card numbers. Moreover,

new methods for enhanced validation of user identities and other sensitive data, in both

online and o�ine contexts, could help mitigate identity the� and nullify unsolicited in-

formation requests from a�ackers. Universal adoption of these next-generation authen-

tication and validation schemes is far from straightforward, but may be essential to the

security of computer systems in the long term, and thus represents a key future research

direction.
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Table A.1 includes detailed performance scores for all entities in the preliminary tests.
�ese scores are based on the formulas in Section 4.5.2 and are the basis of the com-
parative discussion in Section 4.5.3. I visualize the preliminary test performance of only
the subsequently re-tested entities (GSB, SmartScreen, AWPG, PhishTank, and PayPal) in
Figure A.1a.

Figure A.1b illustrates the increased likelihood of URLs with a deceptive domain (Type
IV [41, 102]) to be blacklisted during the preliminary tests. As previously discussed, this
increase is linked to heuristics used by SmartScreen browsers; the positive e�ect that this
had on IE and Edge blacklisting can be seen in the browser performance breakdown in
Figure A.1c. �e la�er two charts are based on data from all 10 preliminary tests.

GSB Filter A Filter B Filter C Filter D Filter E Filter F Sb

GSB 0.988 0 0 0.846 0 0.493 0.466
IE 0 0.142 0 0 0 0.148 0.049
Edge 0.950 0.130 0 0.709 0 0.703 0.551Sbf

Opera 0.138 0 0 0.236 0 0 0.046
PBf 1.000 1.000 0 0.857 0 0.833 0.421 S
TBf 38 10 N/A 43 N/A 151 0.900 C

SmartScreen Filter A Filter B Filter C Filter D Filter E Filter F Sb

GSB 0 0 0 0 0 0 0
IE 0 0.142 0.284 0.142 0.135 0.166 0.100
Edge 0.956 0 0 0 0.952 0.703 0.870Sbf

Opera 0 0 0 0 0 0 0
PBf 1.000 0.143 0.286 0.143 1.000 0.833 0.045 S
TBf 10 10 14 18 162 7 1 C

APWG Filter A Filter B Filter C Filter D Filter E Filter F Sb

GSB 0.648 0 0 0.141 0 0 0.158
IE 0.255 0.432 0.306 0.306 0.524 0.178 0.319
Edge 0.958 0.142 0.137 0 0.821 0.632 0.804Sbf

Opera 0.345 0 0 0 0 0 0.115
PBf 1.000 1.000 1.000 0.857 1.000 0.333 0.198 S
TBf 73 286 199 154 276 188 1 C

PhishTank Filter A Filter B Filter C Filter D Filter E Filter F Sb

GSB 0.971 0.141 0.261 0 0.399 0.303 0.387
IE 0.314 0 0 0 0.286 0.167 0.255
Edge 0.771 0 0 0.124 0.522 0.295 0.529Sbf

Opera 0.112 0.123 0 0 0 0 0.037
PBf 1.000 0.286 0.286 0.125 0.714 0.333 0.372 S
TBf 95 309 344 3784 162 363 0.975 C

PayPal Filter A Filter B Filter C Filter D Filter E Filter F Sb

GSB 0.637 0 0.276 0 0.408 0 0.264
IE 0.345 0.517 0.448 0.306 0.525 0 0.290
Edge 0.213 0 0 0.173 0 0.145 0.119Sbf

Opera 0.102 0 0.253 0 0 0 0.034
PBf 1.000 1.000 1.000 1.000 1.000 0.167 0.255 S
TBf 121 181 128 179 154 3694 0.925 C

ESET Filter A Filter B Filter C Filter D Filter E Filter F Sb

GSB 0.297 0 0 0 0 0 0.059
IE 0 0 0 0 0 0 0
Edge 0.256 0 0 0 0 0 0.085Sbf

Opera 0.137 0 0 0 0 0 0.046
PBf 0.333 0 0 0 0 0 0.055 S
TBf 444 N/A N/A N/A N/A N/A 1 C

WebSense Filter A Filter B Filter C Filter D Filter E Filter F Sb

GSB 0 0 0 0 0 0 0
IE 0 0 0.142 0 0 0.331 0.110
Edge 0 0 0.128 0 0 0.299 0.100Sbf

Opera 0 0 0 0 0 0 0
PBf 0 0 0.143 0 0 0.286 0.014 S
TBf 444 N/A 4 N/A N/A 6 0.275 C

Netcra� Filter A Filter B Filter C Filter D Filter E Filter F Sb

GSB 0 0.135 0 0.538 0 0 0.108
IE 0.166 0 0.142 0 0.134 0 0.100
Edge 0.389 0 0.129 0 0 0 0.130Sbf

Opera 0.302 0.260 0.130 0 0.130 0 0.144
PBf 0.667 0.429 0.182 0.571 0.182 0 0.109 S
TBf 531 334 206 241 318 N/A 0.975 C

US CERT Filter A Filter B Filter C Filter D Filter E Filter F Sb

GSB 0 0 0.139 0 0 0 0.028
IE 0 0.127 0.142 0 0.134 0 0.045
Edge 0 0.127 0.127 0 0.127 0 0.042Sbf

Opera 0 0 0 0 0 0 0
PBf 0 0.143 0.286 0 0.143 0 0.029 S
TBf N/A 28 70 N/A 248 N/A 0.200 C

McAfee Filter A Filter B Filter C Filter D Filter E Filter F Sb

GSB 0 0 0 0 0 0.160 0.032
IE 0.167 0.127 0.143 0.143 0 0 0.056
Edge 0.939 0 0 0 0.955 0.118 0.671Sbf

Opera 0 0 0 0 0 0 0
PBf 1 0.143 0.143 0.143 1 0.167 0.059 S
TBf 134 466 3702 3702 180 172 1 C

Table A.1: Aggregate entity blacklisting performance scores in the preliminary tests.
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(a) By �lter (re-tested entities only)

(b) By URL type (all entities)

(c) By browser (all entities)

Figure A.1: Blacklisting over time (preliminary tests).
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APPENDIX B

DETAILED BREAKDOWN OF PHISHTIME EXPERIMENTS
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Table B.1 shows the detailed con�guration of each PhishTime experiment, as described
in Section 5.6. �e deployment columns show the speci�c experiments that were included
in each deployment.
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Table B.1: A detailed breakdown of each PhishTime experiment and deployment.
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